Suppr超能文献

肌萎缩侧索硬化症-额颞叶痴呆谱系障碍中失调的分子通路。

Dysregulated molecular pathways in amyotrophic lateral sclerosis-frontotemporal dementia spectrum disorder.

作者信息

Gao Fen-Biao, Almeida Sandra, Lopez-Gonzalez Rodrigo

机构信息

Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA

Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.

出版信息

EMBO J. 2017 Oct 16;36(20):2931-2950. doi: 10.15252/embj.201797568. Epub 2017 Sep 15.

Abstract

Frontotemporal dementia (FTD), the second most common form of dementia in people under 65 years of age, is characterized by progressive atrophy of the frontal and/or temporal lobes. FTD overlaps extensively with the motor neuron disease amyotrophic lateral sclerosis (ALS), especially at the genetic level. Both FTD and ALS can be caused by many mutations in the same set of genes; the most prevalent of these mutations is a GGGGCC repeat expansion in the first intron of As shown by recent intensive studies, some key cellular pathways are dysregulated in the ALS-FTD spectrum disorder, including autophagy, nucleocytoplasmic transport, DNA damage repair, pre-mRNA splicing, stress granule dynamics, and others. These exciting advances reveal the complexity of the pathogenic mechanisms of FTD and ALS and suggest promising molecular targets for future therapeutic interventions in these devastating disorders.

摘要

额颞叶痴呆(FTD)是65岁以下人群中第二常见的痴呆形式,其特征是额叶和/或颞叶进行性萎缩。FTD与运动神经元疾病肌萎缩侧索硬化症(ALS)有广泛重叠,尤其是在基因层面。FTD和ALS都可能由同一组基因中的许多突变引起;这些突变中最常见的是C9orf72基因第一个内含子中的GGGGCC重复扩增。最近的深入研究表明,在ALS - FTD谱系障碍中,一些关键的细胞途径失调,包括自噬、核质运输、DNA损伤修复、前体mRNA剪接、应激颗粒动力学等。这些令人振奋的进展揭示了FTD和ALS致病机制的复杂性,并为这些毁灭性疾病未来的治疗干预提出了有前景的分子靶点。

相似文献

1
Dysregulated molecular pathways in amyotrophic lateral sclerosis-frontotemporal dementia spectrum disorder.
EMBO J. 2017 Oct 16;36(20):2931-2950. doi: 10.15252/embj.201797568. Epub 2017 Sep 15.
2
C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels.
Autophagy. 2021 Nov;17(11):3306-3322. doi: 10.1080/15548627.2021.1872189. Epub 2021 Feb 26.
3
Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia.
J Neurochem. 2016 Aug;138 Suppl 1:134-44. doi: 10.1111/jnc.13642. Epub 2016 Jun 15.
4
Common Molecular Pathways in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.
Trends Mol Med. 2016 Sep;22(9):769-783. doi: 10.1016/j.molmed.2016.07.005. Epub 2016 Aug 4.
5
Molecular Mechanisms of Neurodegeneration Related to Hexanucleotide Repeat Expansion.
Behav Neurol. 2019 Jan 15;2019:2909168. doi: 10.1155/2019/2909168. eCollection 2019.
6
Nucleocytoplasmic transport in C9orf72-mediated ALS/FTD.
Nucleus. 2016 Apr 25;7(2):132-7. doi: 10.1080/19491034.2016.1172152. Epub 2016 Apr 26.
8
The emerging roles of microRNAs in the pathogenesis of frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum disorders.
J Neurogenet. 2014 Mar-Jun;28(1-2):30-40. doi: 10.3109/01677063.2013.876021. Epub 2014 Feb 10.
9
Tale of two diseases: amyotrophic lateral sclerosis and frontotemporal dementia.
Neurol India. 2014 Jul-Aug;62(4):347-51. doi: 10.4103/0028-3886.141174.

引用本文的文献

1
Boosting Brain Clean-Up: Can Targeting UPS Genes Offer Neuroprotection?
Mol Neurobiol. 2025 Aug 16. doi: 10.1007/s12035-025-05263-z.
2
RNA Binding Mechanism of the FUS Zinc Finger in Concert with Its Flanking Intrinsically Disordered Region.
J Chem Inf Model. 2025 Aug 11;65(15):8262-8275. doi: 10.1021/acs.jcim.5c01059. Epub 2025 Jul 22.
3
Mitochondrial unfolded protein response (UPR) as novel therapeutic targets for neurological disorders.
J Cereb Blood Flow Metab. 2025 May 15:271678X251341293. doi: 10.1177/0271678X251341293.
4
Immunological Fluid Biomarkers in Frontotemporal Dementia: A Systematic Review.
Biomolecules. 2025 Mar 24;15(4):473. doi: 10.3390/biom15040473.
5
Axonal transport of CHMP2b is regulated by kinesin-binding protein and disrupted by CHMP2b.
Life Sci Alliance. 2025 Feb 28;8(5). doi: 10.26508/lsa.202402934. Print 2025 May.
6
RNA binding proteins (RBPs) on genetic stability and diseases.
Glob Med Genet. 2024 Nov 30;12(1):100032. doi: 10.1016/j.gmg.2024.100032. eCollection 2025 Mar.
7
RNA granules in flux: dynamics to balance physiology and pathology.
Nat Rev Neurosci. 2024 Nov;25(11):711-725. doi: 10.1038/s41583-024-00859-1. Epub 2024 Oct 4.
8
The exocyst subunit EXOC2 regulates the toxicity of expanded GGGGCC repeats in C9ORF72-ALS/FTD.
Cell Rep. 2024 Jul 23;43(7):114375. doi: 10.1016/j.celrep.2024.114375. Epub 2024 Jun 26.
9
Ribosomal DNA and Neurological Disorders.
Curr Mol Med. 2024 May 21. doi: 10.2174/0115665240292079240513093708.
10
Single-cell dissection of the human motor and prefrontal cortices in ALS and FTLD.
Cell. 2024 Apr 11;187(8):1971-1989.e16. doi: 10.1016/j.cell.2024.02.031. Epub 2024 Mar 22.

本文引用的文献

2
C9orf72 expansion disrupts ATM-mediated chromosomal break repair.
Nat Neurosci. 2017 Sep;20(9):1225-1235. doi: 10.1038/nn.4604. Epub 2017 Jul 17.
4
RNA phase transitions in repeat expansion disorders.
Nature. 2017 Jun 8;546(7657):243-247. doi: 10.1038/nature22386. Epub 2017 May 31.
5
In-depth clinico-pathological examination of RNA foci in a large cohort of C9ORF72 expansion carriers.
Acta Neuropathol. 2017 Aug;134(2):255-269. doi: 10.1007/s00401-017-1725-7. Epub 2017 May 15.
7
Progranulin, lysosomal regulation and neurodegenerative disease.
Nat Rev Neurosci. 2017 Jun;18(6):325-333. doi: 10.1038/nrn.2017.36. Epub 2017 Apr 24.
8
Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice.
Nature. 2017 Apr 20;544(7650):367-371. doi: 10.1038/nature22038. Epub 2017 Apr 12.
9
Mutant Huntingtin Disrupts the Nuclear Pore Complex.
Neuron. 2017 Apr 5;94(1):93-107.e6. doi: 10.1016/j.neuron.2017.03.023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验