Suppr超能文献

通过关联规则挖掘 CAMD 阿尔茨海默病数据库中的组合生物标志物。

Identifying combinatorial biomarkers by association rule mining in the CAMD Alzheimer's database.

机构信息

PIT Bioinformatics Group, Eötvös University, H-1117 Budapest, Hungary.

2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary..

出版信息

Arch Gerontol Geriatr. 2017 Nov;73:300-307. doi: 10.1016/j.archger.2017.08.006. Epub 2017 Aug 17.

Abstract

The concept of combinatorial biomarkers was conceived when it was noticed that simple biomarkers are often inadequate for recognizing and characterizing complex diseases. Here we present an algorithmic search method for complex biomarkers which may predict or indicate Alzheimer's disease (AD) and other kinds of dementia. We show that our method is universal since it can describe any Boolean function for biomarker discovery. We applied data mining techniques that are capable to uncover implication-like logical schemes with detailed quality scoring. The new SCARF program was applied for the Tucson, Arizona based Critical Path Institute's CAMD database, containing laboratory and cognitive test data for 5821 patients from the placebo arm of clinical trials of large pharmaceutical companies, and consequently, the data is much more reliable than numerous other databases for dementia. The results of our study on this larger than 5800-patient cohort suggest beneficial effects of high B12 vitamin level, negative effects of high sodium levels or high AST (aspartate aminotransferase) liver enzyme levels to cognition. As an example for a more complex and quite surprising rule: Low or normal blood glucose level with either low cholesterol or high serum sodium would also increase the probability of bad cognition with a 3.7 multiplier. The source code of the new SCARF program is publicly available at http://pitgroup.org/static/scarf.zip.

摘要

组合生物标志物的概念是在注意到简单的生物标志物通常不足以识别和描述复杂疾病时产生的。在这里,我们提出了一种用于复杂生物标志物的算法搜索方法,该方法可用于预测或指示阿尔茨海默病(AD)和其他类型的痴呆症。我们表明,我们的方法是通用的,因为它可以描述用于生物标志物发现的任何布尔函数。我们应用了数据挖掘技术,这些技术能够揭示具有详细质量评分的暗示逻辑方案。新的 SCARF 程序应用于亚利桑那州图森市的关键路径研究所的 CAMD 数据库,该数据库包含来自大型制药公司临床试验安慰剂组的 5821 名患者的实验室和认知测试数据,因此,该数据比其他许多痴呆症数据库可靠得多。我们对该数据库中超过 5800 名患者的研究结果表明,高 B12 维生素水平、高钠水平或高 AST(天冬氨酸转氨酶)肝脏酶水平对认知能力有不利影响。作为一个更复杂且相当令人惊讶的规则的示例:低或正常血糖水平伴有低胆固醇或高血清钠也会使认知能力下降的可能性增加 3.7 倍。新的 SCARF 程序的源代码可在 http://pitgroup.org/static/scarf.zip 上公开获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验