Suppr超能文献

机器学习在阿尔茨海默病进展全面预测中的应用。

Machine learning for comprehensive forecasting of Alzheimer's Disease progression.

机构信息

Unlearn.AI, Inc., 450 Geary St, San Francisco, CA, 94102, San Francisco, USA.

出版信息

Sci Rep. 2019 Sep 20;9(1):13622. doi: 10.1038/s41598-019-49656-2.

Abstract

Most approaches to machine learning from electronic health data can only predict a single endpoint. The ability to simultaneously simulate dozens of patient characteristics is a crucial step towards personalized medicine for Alzheimer's Disease. Here, we use an unsupervised machine learning model called a Conditional Restricted Boltzmann Machine (CRBM) to simulate detailed patient trajectories. We use data comprising 18-month trajectories of 44 clinical variables from 1909 patients with Mild Cognitive Impairment or Alzheimer's Disease to train a model for personalized forecasting of disease progression. We simulate synthetic patient data including the evolution of each sub-component of cognitive exams, laboratory tests, and their associations with baseline clinical characteristics. Synthetic patient data generated by the CRBM accurately reflect the means, standard deviations, and correlations of each variable over time to the extent that synthetic data cannot be distinguished from actual data by a logistic regression. Moreover, our unsupervised model predicts changes in total ADAS-Cog scores with the same accuracy as specifically trained supervised models, additionally capturing the correlation structure in the components of ADAS-Cog, and identifies sub-components associated with word recall as predictive of progression.

摘要

大多数从电子健康数据中进行机器学习的方法只能预测单个终点。能够同时模拟数十个患者特征是迈向阿尔茨海默病个体化医疗的关键一步。在这里,我们使用一种称为条件限制玻尔兹曼机(CRBM)的无监督机器学习模型来模拟详细的患者轨迹。我们使用包含 1909 名轻度认知障碍或阿尔茨海默病患者 18 个月的 44 个临床变量轨迹的数据来训练用于疾病进展个体化预测的模型。我们模拟了包括认知检查、实验室测试及其与基线临床特征关联的每个子组件的演变在内的合成患者数据。CRBM 生成的合成患者数据准确地反映了每个变量随时间的均值、标准差和相关性,以至于合成数据不能通过逻辑回归与实际数据区分开来。此外,我们的无监督模型预测 ADAS-Cog 总评分的变化与经过专门训练的监督模型具有相同的准确性,此外还捕获了 ADAS-Cog 成分中的相关结构,并确定与单词回忆相关的子组件是进展的预测因子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验