Suppr超能文献

基于微阵列的 SNP 基因分型鉴定印度南部人群三阴性乳腺癌(TNBC)的遗传风险因素。

Microarray-based SNP genotyping to identify genetic risk factors of triple-negative breast cancer (TNBC) in South Indian population.

机构信息

Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad, 500085, India.

Sandor Life Sciences, Road No. 3, Banjara Hills, Hyderabad, 500034, India.

出版信息

Mol Cell Biochem. 2018 May;442(1-2):1-10. doi: 10.1007/s11010-017-3187-6. Epub 2017 Sep 16.

Abstract

In the view of aggressive nature of Triple-Negative Breast cancer (TNBC) due to the lack of receptors (ER, PR, HER2) and high incidence of drug resistance associated with it, a case-control association study was conducted to identify the contributing genetic risk factors for Triple-negative breast cancer (TNBC). A total of 30 TNBC patients and 50 age and gender-matched controls of Indian origin were screened for 9,00,000 SNP markers using microarray-based SNP genotyping approach. The initial PLINK association analysis (p < 0.01, MAF 0.14-0.44, OR 10-24) identified 28 non-synonymous SNPs and one stop gain mutation in the exonic region as possible determinants of TNBC risk. All the 29 SNPs were annotated using ANNOVAR. The interactions between these markers were evaluated using Multifactor dimensionality reduction (MDR) analysis. The interactions were in the following order: exm408776 > exm1278309 > rs316389 > rs1651654 > rs635538 > exm1292477. Recursive partitioning analysis (RPA) was performed to construct decision tree useful in predicting TNBC risk. As shown in this analysis, rs1651654 and exm585172 SNPs are found to be determinants of TNBC risk. Artificial neural network model was used to generate the Receiver operating characteristic curves (ROC), which showed high sensitivity and specificity (AUC-0.94) of these markers. To conclude, among the 9,00,000 SNPs tested, CCDC42 exm1292477, ANXA3 exm408776, SASH1 exm585172 are found to be the most significant genetic predicting factors for TNBC. The interactions among exm408776, exm1278309, rs316389, rs1651654, rs635538, exm1292477 SNPs inflate the risk for TNBC further. Targeted analysis of these SNPs and genes alone also will have similar clinical utility in predicting TNBC.

摘要

在三阴性乳腺癌 (TNBC) 由于缺乏受体 (ER、PR、HER2) 且与之相关的药物耐药性发生率高而具有侵袭性的观点下,进行了病例对照关联研究,以确定三阴性乳腺癌 (TNBC) 的遗传风险因素。共筛选了 30 名 TNBC 患者和 50 名年龄和性别匹配的印度裔对照者,使用基于微阵列的 SNP 基因分型方法对 900,000 个 SNP 标记进行检测。初步 PLINK 关联分析(p<0.01,MAF 0.14-0.44,OR 10-24)确定了 28 个非同义 SNP 和一个外显子区域的终止增益突变,可能是 TNBC 风险的决定因素。使用 ANNOVAR 对所有 29 个 SNP 进行注释。使用多因素维度缩减 (MDR) 分析评估这些标记之间的相互作用。相互作用的顺序如下:exm408776>exm1278309>rs316389>rs1651654>rs635538>exm1292477。进行递归分区分析 (RPA) 以构建有助于预测 TNBC 风险的决策树。如分析所示,rs1651654 和 exm585172 SNP 被发现是 TNBC 风险的决定因素。使用人工神经网络模型生成接收器工作特征曲线 (ROC),显示这些标记具有高灵敏度和特异性 (AUC-0.94)。总之,在所测试的 900,000 个 SNP 中,CCDC42 exm1292477、ANXA3 exm408776、SASH1 exm585172 被发现是 TNBC 最显著的遗传预测因素。exm408776、exm1278309、rs316389、rs1651654、rs635538、exm1292477 SNP 之间的相互作用进一步增加了 TNBC 的风险。单独对这些 SNP 和基因进行靶向分析也将在预测 TNBC 方面具有类似的临床应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验