Suppr超能文献

面临表面增强拉曼散射实际应用的挑战:用于食品污染物快速现场检测的表面增强拉曼散射基底的设计和纳米制造。

Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering: Design and Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Rapid Field Test of Food Contaminants.

机构信息

College of Biosystems Engineering and Food Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , China.

Zhejiang A&F University , 88 Huanchengdong Road , Hangzhou , Zhejiang 311300 , China.

出版信息

J Agric Food Chem. 2018 Jul 5;66(26):6525-6543. doi: 10.1021/acs.jafc.7b03075. Epub 2017 Nov 16.

Abstract

Surface-enhanced Raman scattering (SERS) is capable of detecting a single molecule with high specificity and has become a promising technique for rapid chemical analysis of agricultural products and foods. With a deeper understanding of the SERS effect and advances in nanofabrication technology, SERS is now on the edge of going out of the laboratory and becoming a sophisticated analytical tool to fulfill various real-world tasks. This review focuses on the challenges that SERS has met in this progress, such as how to obtain a reliable SERS signal, improve the sensitivity and specificity in a complex sample matrix, develop simple and user-friendly practical sensing approach, reduce the running cost, etc. This review highlights the new thoughts on design and nanofabrication of SERS-active substrates for solving these challenges and introduces the recent advances of SERS applications in this area. We hope that our discussion will encourage more researches to address these challenges and eventually help to bring SERS technology out of the laboratory.

摘要

表面增强拉曼散射(SERS)具有高特异性检测单个分子的能力,已成为农产品和食品快速化学分析的一种很有前途的技术。随着对 SERS 效应的深入了解和纳米制造技术的进步,SERS 现在正处于走出实验室并成为满足各种实际任务的复杂分析工具的边缘。本综述重点关注 SERS 在这一进展中遇到的挑战,例如如何获得可靠的 SERS 信号、在复杂的样品基质中提高灵敏度和特异性、开发简单易用的实际传感方法、降低运行成本等。本综述强调了设计和制造 SERS 活性衬底的新思路,以解决这些挑战,并介绍了 SERS 在该领域的最新应用进展。我们希望我们的讨论将鼓励更多的研究来解决这些挑战,并最终帮助 SERS 技术走出实验室。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验