Zuiderbaan Wietske, Harvey Ben M, Dumoulin Serge O
Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.
Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands.
PLoS One. 2017 Sep 18;12(9):e0183295. doi: 10.1371/journal.pone.0183295. eCollection 2017.
A goal of computational models is not only to explain experimental data but also to make new predictions. A current focus of computational neuroimaging is to predict features of the presented stimulus from measured brain signals. These computational neuroimaging approaches may be agnostic about the underlying neural processes or may be biologically inspired. Here, we use the biologically inspired population receptive field (pRF) approach to identify presented images from fMRI recordings of the visual cortex, using an explicit model of the underlying neural response selectivity. The advantage of the pRF-model is its simplicity: it is defined by a handful of parameters, which can be estimated from fMRI data that was collected within half an hour. Using 7T MRI, we measured responses elicited by different visual stimuli: (i) conventional pRF mapping stimuli, (ii) semi-random synthetic images and (iii) natural images. The pRF mapping stimuli were used to estimate the pRF-properties of each cortical location in early visual cortex. Next, we used these pRFs to identify which synthetic or natural images was presented to the subject from the fMRI responses. We show that image identification using V1 responses is far above chance, both for the synthetic and natural images. Thus, we can identify visual images, including natural images, using the most fundamental low-parameter pRF model estimated from conventional pRF mapping stimuli. This allows broader application of image identification.
计算模型的一个目标不仅是解释实验数据,还在于做出新的预测。计算神经成像当前的一个重点是根据测量到的脑信号预测所呈现刺激的特征。这些计算神经成像方法可能对潜在的神经过程不做假设,也可能受到生物学启发。在这里,我们使用受生物学启发的群体感受野(pRF)方法,通过潜在神经反应选择性的显式模型,从视觉皮层的功能磁共振成像(fMRI)记录中识别所呈现的图像。pRF模型的优点在于其简单性:它由少数几个参数定义,这些参数可以从半小时内收集的fMRI数据中估计出来。使用7T磁共振成像,我们测量了不同视觉刺激引发的反应:(i)传统的pRF映射刺激,(ii)半随机合成图像和(iii)自然图像。pRF映射刺激用于估计早期视觉皮层中每个皮层位置的pRF特性。接下来,我们使用这些pRF从fMRI反应中识别出呈现给受试者的是哪些合成图像或自然图像。我们表明,无论是对于合成图像还是自然图像,使用V1反应进行图像识别的准确率都远高于随机水平。因此,我们可以使用从传统pRF映射刺激中估计出的最基本的低参数pRF模型来识别视觉图像,包括自然图像。这使得图像识别具有更广泛的应用。