Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08854;
Non-Linear Physics Group, Faculty of Physics, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10572-10577. doi: 10.1073/pnas.1712381114. Epub 2017 Sep 18.
Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.
植物根系深度会影响生态系统对环境压力(如干旱)的恢复能力。深根将深层土壤/地下水与大气连接起来,从而影响水文循环和气候。深根增强基岩风化,从而调节长期碳循环。然而,我们对根系的深度以及原因知之甚少。在这里,我们对超过 1000 种物种的 2200 个根系观测值进行了全球综合分析,这些观测值涉及生物(生活型、属)和非生物(降水、土壤、排水)梯度。研究结果表明,根系深度对局部土壤水分剖面的敏感性很强,而局部土壤水分剖面是由降水从顶部的渗透深度(反映气候和土壤)和地下水表深度(反映地形驱动的陆地排水)决定的。在排水良好的高地,根系深度随渗透深度而变化;在积水的低地,根系保持浅层,避免地下水表以下的缺氧胁迫;在两者之间,高生产力和干旱会使根系深入到地下水毛细带以下数米处。这个框架解释了在相同气候条件下,同一物种在不同地形位置下观察到的根系深度差异。我们通过使用反演模型,根据观测到的生产力和大气,在 30″(约 1-km)的全球格网中估计根区水分吸收深度,来评估这些水文机制的全球意义,以捕捉对土壤水文至关重要的地形。由此得出的植物根系深度模式在景观到全球尺度上具有强烈的地形和水文特征。它们强调了一种基本的植物-水反馈途径,这可能对理解植物介导的全球变化至关重要。