Liu Yuhan, Zha Yuanyuan, Ran Gulin, Zhang Yonggen, Shi Liangsheng
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
Sci Data. 2025 Jul 9;12(1):1170. doi: 10.1038/s41597-025-05511-w.
Accurate and continuous monitoring of soil moisture (SM) is crucial for a wide range of applications in agriculture, hydrology, and climate modelling. In this study, we present a novel machine learning (ML) based framework for generating a continuously updated, multilayer global SM dataset: SMRFR (Soil Moisture via Random Forest Regression). Leveraging publicly available reanalysis and remote sensing data, SMRFR provides daily SM estimates at five soil layers (0-5, 5-10, 10-30, 30-50 and 50-100 cm) with a spatial resolution of 9 km, covering the period from 2000 to 2023. Evaluation results demonstrate that SMRFR effectively captures both spatial and temporal SM variability. It also exhibits strong generalization capacity, successfully transferring knowledge across continents and accurately capturing transient and seasonal SM dynamics following rainfall events. SMRFR achieved an unbiased root mean square error of 0.0339 m/m on the validation set. Our novel SM dataset offers a basis and valuable reference for agricultural, hydrological, and ecological research, enabling improved analysis and modelling of SM dynamics at regional to global scales.
准确且持续地监测土壤湿度(SM)对于农业、水文和气候建模等广泛应用至关重要。在本研究中,我们提出了一种基于机器学习(ML)的新型框架,用于生成一个持续更新的多层全球土壤湿度数据集:SMRFR(通过随机森林回归获取土壤湿度)。利用公开可用的再分析和遥感数据,SMRFR提供了五个土壤层(0 - 5厘米、5 - 10厘米、10 - 30厘米、30 - 50厘米和50 - 100厘米)的每日土壤湿度估计值,空间分辨率为9千米,涵盖2000年至2023年期间。评估结果表明,SMRFR有效地捕捉了土壤湿度的时空变异性。它还表现出强大的泛化能力,成功地在各大洲之间转移知识,并准确捕捉降雨事件后的瞬态和季节性土壤湿度动态。在验证集上,SMRFR实现了无偏均方根误差为0.0339米/米。我们的新型土壤湿度数据集为农业、水文和生态研究提供了基础和有价值的参考,有助于在区域到全球尺度上改进对土壤湿度动态的分析和建模。