Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.
Biocenter Oulu, University of Oulu, 90220 Oulu, Finland.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10636-10641. doi: 10.1073/pnas.1707506114. Epub 2017 Sep 18.
During their life cycle, apicomplexan parasites, such as the malaria parasite , use actomyosin-driven gliding motility to move and invade host cells. For this process, actin filament length and stability are temporally and spatially controlled. In contrast to canonical actin, actin 1 (Act1) does not readily polymerize into long, stable filaments. The structural basis of filament instability, which plays a pivotal role in host cell invasion, and thus infectivity, is poorly understood, largely because high-resolution structures of Act1 filaments were missing. Here, we report the near-atomic structure of jasplakinolide (JAS)-stabilized Act1 filaments determined by electron cryomicroscopy. The general filament architecture is similar to that of mammalian F-actin. The high resolution of the structure allowed us to identify small but important differences at inter- and intrastrand contact sites, explaining the inherent instability of apicomplexan actin filaments. JAS binds at regular intervals inside the filament to three adjacent actin subunits, reinforcing filament stability by hydrophobic interactions. Our study reveals the high-resolution structure of a small molecule bound to F-actin, highlighting the potential of electron cryomicroscopy for structure-based drug design. Furthermore, our work serves as a strong foundation for understanding the structural design and evolution of actin filaments and their function in motility and host cell invasion of apicomplexan parasites.
在生命周期中,疟原虫等顶复门寄生虫利用肌动球蛋白驱动的滑行运动来移动和侵入宿主细胞。对于这个过程,肌动蛋白丝的长度和稳定性受到时间和空间的控制。与经典肌动蛋白不同,肌动蛋白 1(Act1)不易聚合成长而稳定的纤维。这种纤维不稳定性的结构基础在宿主细胞入侵和感染性中起着关键作用,但人们对此知之甚少,主要是因为缺乏 Act1 纤维的高分辨率结构。在这里,我们通过电子 cryomicroscopy 报告了 jasplakinolide(JAS)稳定的 Act1 纤维的近原子结构。一般的纤维结构与哺乳动物的 F-肌动蛋白相似。该结构的高分辨率使我们能够识别出在链间和链内接触点的微小但重要的差异,解释了顶复门肌动蛋白纤维固有的不稳定性。JAS 以规则的间隔结合在纤维内的三个相邻肌动蛋白亚基上,通过疏水相互作用增强纤维稳定性。我们的研究揭示了小分子与 F-肌动蛋白结合的高分辨率结构,突出了电子 cryomicroscopy 在基于结构的药物设计中的潜力。此外,我们的工作为理解肌动蛋白纤维的结构设计和进化以及它们在顶复门寄生虫的运动和宿主细胞入侵中的功能提供了坚实的基础。