Radiology & Biomedical Imaging, UCSF Medical Center, 505 Parnassus Ave, San Francisco, CA, 94158, USA.
J Digit Imaging. 2018 Apr;31(2):245-251. doi: 10.1007/s10278-017-0021-3.
Magnetic resonance imaging (MRI) protocoling can be time- and resource-intensive, and protocols can often be suboptimal dependent upon the expertise or preferences of the protocoling radiologist. Providing a best-practice recommendation for an MRI protocol has the potential to improve efficiency and decrease the likelihood of a suboptimal or erroneous study. The goal of this study was to develop and validate a machine learning-based natural language classifier that can automatically assign the use of intravenous contrast for musculoskeletal MRI protocols based upon the free-text clinical indication of the study, thereby improving efficiency of the protocoling radiologist and potentially decreasing errors. We utilized a deep learning-based natural language classification system from IBM Watson, a question-answering supercomputer that gained fame after challenging the best human players on Jeopardy! in 2011. We compared this solution to a series of traditional machine learning-based natural language processing techniques that utilize a term-document frequency matrix. Each classifier was trained with 1240 MRI protocols plus their respective clinical indications and validated with a test set of 280. Ground truth of contrast assignment was obtained from the clinical record. For evaluation of inter-reader agreement, a blinded second reader radiologist analyzed all cases and determined contrast assignment based on only the free-text clinical indication. In the test set, Watson demonstrated overall accuracy of 83.2% when compared to the original protocol. This was similar to the overall accuracy of 80.2% achieved by an ensemble of eight traditional machine learning algorithms based on a term-document matrix. When compared to the second reader's contrast assignment, Watson achieved 88.6% agreement. When evaluating only the subset of cases where the original protocol and second reader were concordant (n = 251), agreement climbed further to 90.0%. The classifier was relatively robust to spelling and grammatical errors, which were frequent. Implementation of this automated MR contrast determination system as a clinical decision support tool may save considerable time and effort of the radiologist while potentially decreasing error rates, and require no change in order entry or workflow.
磁共振成像(MRI)方案制定既耗时又耗资源,而且方案往往取决于方案制定放射科医生的专业知识或偏好,因此并不理想。提供 MRI 方案的最佳实践建议有可能提高效率并降低方案不理想或出错的可能性。本研究的目的是开发和验证一种基于机器学习的自然语言分类器,该分类器可以根据研究的自由文本临床指征自动为肌肉骨骼 MRI 方案分配静脉内造影剂的使用,从而提高方案制定放射科医生的效率,并可能减少错误。我们利用 IBM Watson 的基于深度学习的自然语言分类系统,这是一种问答超级计算机,在 2011 年挑战 Jeopardy! 的最佳人类选手后声名鹊起。我们将该解决方案与一系列基于传统机器学习的自然语言处理技术进行了比较,这些技术利用术语-文档频率矩阵。每个分类器都使用 1240 个 MRI 方案及其各自的临床指征进行训练,并使用 280 个测试集进行验证。对比剂分配的真实情况是从临床记录中获得的。为了评估读者间的一致性,一位盲法第二读者放射科医生分析了所有病例,并仅根据自由文本临床指征确定对比剂分配。在测试集中,与原始方案相比,Watson 的整体准确率为 83.2%。这与基于术语-文档矩阵的八个传统机器学习算法的整体准确率 80.2%相似。与第二读者的对比剂分配相比,Watson 的一致性为 88.6%。当仅评估原始方案和第二读者一致的病例子集(n=251)时,一致性进一步提高到 90.0%。该分类器对拼写和语法错误具有较强的鲁棒性,这些错误很常见。将这种自动 MR 对比确定系统作为临床决策支持工具实施可能会为放射科医生节省大量时间和精力,同时潜在地降低错误率,并且不需要更改订单输入或工作流程。