Meinecke Lina, Engblom Stefan, Hellander Andreas, Lötstedt Per
Division of Scientific Computing, Department of Information Technology, Uppsala University, SE-75105 Uppsala, Sweden.
SIAM J Sci Comput. 2016;38(1):A55-A83. doi: 10.1137/15M101110X. Epub 2016 Jan 6.
In computational systems biology, the mesoscopic model of reaction-diffusion kinetics is described by a continuous time, discrete space Markov process. To simulate diffusion stochastically, the jump coefficients are obtained by a discretization of the diffusion equation. Using unstructured meshes to represent complicated geometries may lead to negative coefficients when using piecewise linear finite elements. Several methods have been proposed to modify the coefficients to enforce the nonnegativity needed in the stochastic setting. In this paper, we present a method to quantify the error introduced by that change. We interpret the modified discretization matrix as the exact finite element discretization of a perturbed equation. The forward error, the error between the analytical solutions to the original and the perturbed equations, is bounded by the backward error, the error between the diffusion of the two equations. We present a backward analysis algorithm to compute the diffusion coefficient from a given discretization matrix. The analysis suggests a new way of deriving nonnegative jump coefficients that minimizes the backward error. The theory is tested in numerical experiments indicating that the new method is superior and also minimizes the forward error.
在计算系统生物学中,反应扩散动力学的介观模型由连续时间、离散空间的马尔可夫过程描述。为了随机模拟扩散,通过对扩散方程进行离散化来获得跳跃系数。当使用非结构化网格来表示复杂几何形状时,在使用分段线性有限元时可能会导致负系数。已经提出了几种方法来修改系数,以满足随机设置中所需的非负性。在本文中,我们提出了一种方法来量化这种变化所引入的误差。我们将修改后的离散化矩阵解释为一个扰动方程的精确有限元离散化。前向误差,即原始方程和扰动方程的解析解之间的误差,由后向误差界定,即两个方程的扩散之间的误差。我们提出了一种后向分析算法,用于从给定的离散化矩阵计算扩散系数。该分析提出了一种推导非负跳跃系数的新方法,该方法可使后向误差最小化。数值实验验证了该理论,表明新方法更优,同时也使前向误差最小化。