Suppr超能文献

质子扩散在光还原 ZnO 纳米晶体中质子耦合电子转移的非指数动力学中的作用。

Role of Proton Diffusion in the Nonexponential Kinetics of Proton-Coupled Electron Transfer from Photoreduced ZnO Nanocrystals.

机构信息

Department of Chemistry, 600 South Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.

出版信息

ACS Nano. 2017 Oct 24;11(10):10295-10302. doi: 10.1021/acsnano.7b05009. Epub 2017 Sep 22.

Abstract

Experiments have suggested that photoreduced ZnO nanocrystals transfer an electron and a proton to organic radicals through a concerted proton-coupled electron transfer (PCET) mechanism. The kinetics of this process was studied by monitoring the decay of the absorbance that reflects the concentration of electrons in the conduction bands of the nanocrystals. Interestingly, this absorbance exhibited nonexponential decay kinetics that could not be explained by heterogeneities of the nanoparticles or electron content. To determine if proton diffusion from inside the nanocrystal to reactive sites on the surface could lead to such nonexponential kinetics, herein this process is modeled using kinetic Monte Carlo simulations. These simulations provide the survival probability of a proton hopping among bulk, subsurface, and surface sites within the nanocrystal until it reaches a reactive surface site where it transfers to an organic radical. Using activation barriers predominantly obtained from periodic density functional theory, the simulations reproduce the nonexponential decay kinetics. This nonexponential behavior is found to arise from the broad distribution of lifetimes caused by different types of subsurface and surface sites. The longer lifetimes are associated with the proton becoming temporarily trapped in a subsurface site that does not have direct access to a reactive surface site due to capping ligands. These calculations suggest that movement of the protons rather than the electrons dominate the nonexponential kinetics of the PCET reaction. Thus, the impact of both bulk and surface properties of metal-oxide nanoparticles on proton conductivity should be considered when designing heterogeneous catalysts.

摘要

实验表明,光还原的 ZnO 纳米晶体通过协同质子耦合电子转移(PCET)机制将电子和质子转移给有机自由基。通过监测反映纳米晶体导带中电子浓度的吸收衰减来研究该过程的动力学。有趣的是,这种吸收表现出非指数衰减动力学,不能用纳米粒子的不均匀性或电子含量来解释。为了确定从纳米晶体内扩散到表面反应性位点的质子是否会导致这种非指数动力学,本文使用动力学蒙特卡罗模拟对该过程进行建模。这些模拟提供了质子在纳米晶体内的体相、次表面和表面位点之间跳跃的存活概率,直到它到达反应性表面位点并转移到有机自由基。使用主要从周期性密度泛函理论获得的激活势垒,模拟再现了非指数衰减动力学。这种非指数行为是由不同类型的次表面和表面位点引起的寿命分布广泛引起的。较长的寿命与质子由于盖帽配体而暂时被困在次表面位点有关,该次表面位点由于盖帽配体而无法直接到达反应性表面位点。这些计算表明,质子的迁移而不是电子主导着 PCET 反应的非指数动力学。因此,在设计异相催化剂时,应考虑金属氧化物纳米粒子的体相和表面性质对质子电导率的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验