Department of Anatomy, Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
Department of Pediatrics, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
J Neuroinflammation. 2017 Sep 19;14(1):189. doi: 10.1186/s12974-017-0958-7.
The primary cilium is an organelle that can act as a master regulator of cellular signaling. Despite the presence of primary cilia in hippocampal neurons, their function is not fully understood. Recent studies have demonstrated that the primary cilium influences interleukin (IL)-1β-induced NF-κB signaling, ultimately mediating the inflammatory response. We, therefore, investigated ciliary function and NF-κB signaling in lipopolysaccharide (LPS)-induced neuroinflammation in conjunction with ciliary length analysis.
Since TLR4/NF-κB signaling is a well-known inflammatory pathway, we measured ciliary length and inflammatory mediators in wild type (WT) and TLR4 mice injected with LPS. Next, to exclude the effects of microglial TLR4, we examined the ciliary length, ciliary components, inflammatory cytokine, and mediators in HT22 hippocampal neuronal cells.
Primary ciliary length decreased in hippocampal pyramidal neurons after intracerebroventricular injection of LPS in WT mice, whereas it increased in TLR4 mice. LPS treatment decreased primary ciliary length, activated NF-κB signaling, and increased Cox2 and iNOS levels in HT22 hippocampal neurons. In contrast, silencing Kif3a, a key protein component of cilia, increased ARL13B ciliary protein levels and suppressed NF-κB signaling and expression of inflammatory mediators.
These data suggest that LPS-induced NF-κB signaling and inflammatory mediator expression are modulated by cilia and that the blockade of primary cilium formation by Kif3a siRNA regulates TLR4-induced NF-κB signaling. We propose that primary cilia are critical for regulating NF-κB signaling events in neuroinflammation and in the innate immune response.
初级纤毛是一种可以作为细胞信号转导主调控器的细胞器。尽管海马神经元中存在初级纤毛,但它们的功能尚未完全了解。最近的研究表明,初级纤毛影响白细胞介素 (IL)-1β诱导的 NF-κB 信号转导,最终介导炎症反应。因此,我们结合纤毛长度分析研究了脂多糖 (LPS) 诱导的神经炎症中的纤毛功能和 NF-κB 信号转导。
由于 TLR4/NF-κB 信号转导是一种众所周知的炎症途径,我们测量了 LPS 注射的野生型 (WT) 和 TLR4 小鼠的纤毛长度和炎症介质。接下来,为了排除小胶质细胞 TLR4 的影响,我们检查了 HT22 海马神经元细胞的纤毛长度、纤毛成分、炎症细胞因子和介质。
LPS 经侧脑室注射后,WT 小鼠海马锥体神经元中的初级纤毛长度减少,而 TLR4 小鼠中的纤毛长度增加。LPS 处理降低了初级纤毛长度,激活了 NF-κB 信号转导,并增加了 HT22 海马神经元中的 Cox2 和 iNOS 水平。相反,沉默纤毛关键蛋白成分 Kif3a 增加了 ARL13B 纤毛蛋白水平,并抑制了 NF-κB 信号转导和炎症介质的表达。
这些数据表明,LPS 诱导的 NF-κB 信号转导和炎症介质表达受纤毛调节,Kif3a siRNA 阻断初级纤毛形成调节 TLR4 诱导的 NF-κB 信号转导。我们提出,初级纤毛对于调节神经炎症和先天免疫反应中的 NF-κB 信号转导事件至关重要。