Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD 20850.
Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD 21231.
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8885-E8894. doi: 10.1073/pnas.1700534114. Epub 2017 Sep 19.
Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOS, replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.
在这里,我们提出了一种利用合成基因组学工具对单纯疱疹病毒 1(HSV-1)进行基因组工程改造的变革性方法。我们相信,与以前的技术相比,这种方法将能够更快速、更复杂地对 HSV-1 和其他大型 DNA 病毒进行修饰,从而促进许多有用的应用。我们使用酵母转化相关重组技术来克隆包含 HSV-1 株 KOS 152 kb 基因组的 11 个片段。利用相邻片段之间的重叠序列,我们在酵母中将这些片段组装成一个完整的病毒基因组,然后将其转移到宿主中,并在转染哺乳动物细胞后重新构建出有感染性的病毒。从这个酵母组装基因组衍生的病毒 KOS 的复制动力学与野生型病毒相似。我们通过对单个基因进行多次修饰、同时对两个基因进行修饰以及对一组编码病毒结构蛋白的五个保守基因进行单独和组合缺失,证明了这种模块化组装技术的实用性。虽然通过组装方法在大型 DNA 病毒基因组中进行全基因组编辑的能力引发了双重用途的担忧,但我们认为潜在的好处超过了风险。这些好处包括增强功能研究、生成溶瘤病毒载体、开发用于疫苗或治疗的基因传递平台,以及更快速地开发针对潜在生物威胁的对策。