Suppr超能文献

来自健康生活方式网站的移动应用用户都是谁?应用使用模式及用户特征分析。

Who are mobile app users from healthy lifestyle websites? Analysis of patterns of app use and user characteristics.

作者信息

Elavsky Steriani, Smahel David, Machackova Hana

机构信息

Institute for Research on Children, Youth, and Family, Faculty of Social Studies, Masaryk University, Joštova 10, 60200, Brno, Czech Republic.

出版信息

Transl Behav Med. 2017 Dec;7(4):891-901. doi: 10.1007/s13142-017-0525-x.

Abstract

The use of online communities and websites for health information has proliferated along with the use of mobile apps for managing health behaviors such as diet and exercise. The scarce evidence available to date suggests that users of these websites and apps differ in significant ways from non-users but most data come from US- and UK-based populations. In this study, we recruited users of nutrition, weight management, and fitness-oriented websites in the Czech Republic to better understand who uses mobile apps and who does not, including user sociodemographic and psychological profiles. Respondents aged 13-39 provided information on app use through an online survey (n = 669; M age = 24.06, SD = 5.23; 84% female). Among users interested in health topics, respondents using apps for managing nutrition, weight, and fitness (n = 403, 60%) were more often female, reported more frequent smartphone use, and more expert phone skills. In logistic regression models, controlling for sociodemographics, web, and phone activity, mHealth app use was predicted by levels of excessive exercise (OR 1.346, 95% CI 1.061-1.707, p < .01). Among app users, we found differences in types of apps used by gender, age, and weight status. Controlling for sociodemographics and web and phone use, drive for thinness predicted the frequency of use of apps for healthy eating (β = 0.14, p < .05), keeping a diet (β = 0.27, p < .001), and losing weight (β = 0.33, p < .001), whereas excessive exercise predicted the use of apps for keeping a diet (β = 0.18, p < .01), losing weight (β = 0.12, p < .05), and managing sport/exercise (β = 0.28, p < .001). Sensation seeking was negatively associated with the frequency of use of apps for maintaining weight (β = - 0.13, p < .05). These data unveil the user characteristics of mHealth app users from nutrition, weight management, and fitness websites, helping inform subsequent design of mHealth apps and mobile intervention strategies.

摘要

随着用于管理饮食和运动等健康行为的移动应用程序的使用,利用在线社区和网站获取健康信息的情况也日益普遍。迄今为止,为数不多的证据表明,这些网站和应用程序的用户在很多重要方面与非用户存在差异,但大多数数据来自美国和英国人群。在本研究中,我们招募了捷克共和国营养、体重管理和健身相关网站的用户,以更好地了解哪些人使用移动应用程序,哪些人不使用,包括用户的社会人口统计学和心理特征。年龄在13至39岁之间的受访者通过在线调查提供了应用程序使用情况的信息(n = 669;年龄均值 = 24.06,标准差 = 5.23;84%为女性)。在对健康话题感兴趣的用户中,使用应用程序管理营养、体重和健身的受访者(n = 403,占60%)女性比例更高,报告称智能手机使用频率更高,且手机技能更熟练。在逻辑回归模型中,在控制了社会人口统计学、网络和手机活动因素后,过度运动水平可预测移动健康应用程序的使用情况(比值比1.346,95%置信区间1.061 - 1.707,p < .01)。在应用程序用户中,我们发现不同性别、年龄和体重状况的用户使用的应用程序类型存在差异。在控制了社会人口统计学以及网络和手机使用情况后,追求瘦身的心理可预测健康饮食应用程序的使用频率(β = 0.14,p < .05)、坚持节食应用程序的使用频率(β = 0.27,p < .001)以及减肥应用程序的使用频率(β = 0.33,p < .001),而过度运动可预测坚持节食应用程序的使用情况(β = 0.18,p < .01)、减肥应用程序的使用情况(β = 0.12,p < .05)以及运动/锻炼管理应用程序的使用情况(β = 0.28,p < .001)。寻求刺激与维持体重应用程序的使用频率呈负相关(β = - 0.13,p < .05)。这些数据揭示了营养、体重管理和健身网站的移动健康应用程序用户的特征,有助于为后续移动健康应用程序的设计和移动干预策略提供参考。

相似文献

2
Use of Weight-Management Mobile Phone Apps in Saudi Arabia: A Web-Based Survey.
JMIR Mhealth Uhealth. 2019 Feb 22;7(2):e12692. doi: 10.2196/12692.
4
Who Uses Mobile Phone Health Apps and Does Use Matter? A Secondary Data Analytics Approach.
J Med Internet Res. 2017 Apr 19;19(4):e125. doi: 10.2196/jmir.5604.
5
Using Smartphones and Health Apps to Change and Manage Health Behaviors: A Population-Based Survey.
J Med Internet Res. 2017 Apr 5;19(4):e101. doi: 10.2196/jmir.6838.
8
Functions of mHealth applications: A user's perspective.
Health Informatics J. 2019 Sep;25(3):1065-1075. doi: 10.1177/1460458217740725. Epub 2017 Nov 10.
10
Identification of Users for a Smoking Cessation Mobile App: Quantitative Study.
J Med Internet Res. 2018 Apr 9;20(4):e118. doi: 10.2196/jmir.7606.

引用本文的文献

1
The use of digital platforms and physical activity practice in a population from southern Brazil: Findings from the PAMPA Cohort.
Prev Med Rep. 2024 Jul 10;44:102816. doi: 10.1016/j.pmedr.2024.102816. eCollection 2024 Aug.
2
': Young student women's perceptions of their cumulative use of digital fitness technologies across the Covid-19 pandemic.
J Health Psychol. 2024 Aug;29(9):1046-1058. doi: 10.1177/13591053231225598. Epub 2024 Jan 27.
3
The use and acceptability of diet-related apps and websites in Australia: Cross-sectional study.
Digit Health. 2022 Dec 20;8:20552076221139091. doi: 10.1177/20552076221139091. eCollection 2022 Jan-Dec.
9
ACCU3RATE: A mobile health application rating scale based on user reviews.
PLoS One. 2021 Dec 16;16(12):e0258050. doi: 10.1371/journal.pone.0258050. eCollection 2021.
10
Patterns of digital information and communication technology use among patients at primary health care centres in Colombia: Phase I of the DIADA project.
Rev Colomb Psiquiatr (Engl Ed). 2021 Jul;50 Suppl 1(Suppl 1):116-132. doi: 10.1016/j.rcpeng.2021.06.003. Epub 2021 Jul 10.

本文引用的文献

1
Use of Mobile Health Applications for Health-Seeking Behavior Among US Adults.
J Med Syst. 2016 Jun;40(6):153. doi: 10.1007/s10916-016-0492-7. Epub 2016 May 4.
2
A user-centered model for designing consumer mobile health (mHealth) applications (apps).
J Biomed Inform. 2016 Apr;60:243-51. doi: 10.1016/j.jbi.2016.02.002. Epub 2016 Feb 20.
4
Health App Use Among US Mobile Phone Owners: A National Survey.
JMIR Mhealth Uhealth. 2015 Nov 4;3(4):e101. doi: 10.2196/mhealth.4924.
6
Implementation of behavior change techniques in mobile applications for physical activity.
Am J Prev Med. 2015 Apr;48(4):452-5. doi: 10.1016/j.amepre.2014.10.010. Epub 2015 Jan 6.
7
Exercise dependence as a mediator of the exercise and eating disorders relationship: a pilot study.
Eat Behav. 2015 Jan;16:9-12. doi: 10.1016/j.eatbeh.2014.10.012. Epub 2014 Nov 1.
8
Apps to promote physical activity among adults: a review and content analysis.
Int J Behav Nutr Phys Act. 2014 Jul 25;11:97. doi: 10.1186/s12966-014-0097-9.
10
Behavior change techniques in top-ranked mobile apps for physical activity.
Am J Prev Med. 2014 Jun;46(6):649-52. doi: 10.1016/j.amepre.2014.01.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验