Division of Fish and Wildlife, New York State Department of Environmental Conservation, Albany, New York, USA.
Department of Biology, Skidmore College, Saratoga Springs, New York 12866, USA.
J Expo Sci Environ Epidemiol. 2018 Mar;28(2):109-118. doi: 10.1038/jes.2017.17. Epub 2017 Sep 20.
Geographic information adds a powerful component to environmental epidemiology studies but can compromise subject confidentiality. Although locations are often masked by perturbing spatial coordinates, existing masks do not ensure that the perturbation area contains a sufficient number of valid surrogates to prevent disclosure, nor are they designed to minimize perturbation while maintaining a specified level of privacy. I introduce a new approach to geoprivacy in which real property parcel data with information about land use are used to develop a pool of verified neighbors. GIS (geographic information system) processing optionally restricts the pool to residences with values of environmental variables similar to those of the subject parcel. A surrogate is then randomly selected from the k members of the pool closest to the subject with k chosen to achieve the desired spatial privacy protection. The method guarantees the specified level of privacy even where population density is uneven while minimizing spatial distortion and changes to the values of environmental variables assigned to subjects. The method is illustrated with an example that found it to be more effective than random perturbation-based methods in both protecting privacy and preserving spatial fidelity to the original locations.
地理信息为环境流行病学研究增添了强大的组成部分,但可能会损害研究对象的保密性。虽然位置通常通过扰乱空间坐标来屏蔽,但现有的屏蔽措施并不能确保扰动区域包含足够数量的有效替代者来防止信息泄露,也没有设计为在保持指定隐私级别同时最小化扰动。我介绍了一种新的地理隐私方法,其中使用有关土地利用的房地产包裹数据来开发经过验证的邻居池。地理信息系统(GIS)处理可选择将池限制为与主题包裹的环境变量值相似的住宅。然后,从与主题最近的 k 个成员中随机选择替代者,k 的选择是为了实现所需的空间隐私保护。即使在人口密度不均匀的情况下,该方法也能保证指定的隐私级别,同时最小化分配给研究对象的环境变量值的空间失真和变化。该方法通过一个示例进行了说明,结果表明它在保护隐私和保留原始位置的空间保真度方面都比基于随机扰动的方法更有效。