Suppr超能文献

针对使用参与式传感数据的研究活动的“设计中的地理隐私指南”

A Geoprivacy by Design Guideline for Research Campaigns That Use Participatory Sensing Data.

作者信息

Kounadi Ourania, Resch Bernd

机构信息

1 University of Salzburg, Austria.

2 Center for Geographic Analysis, Harvard University, Cambridge, MA, USA.

出版信息

J Empir Res Hum Res Ethics. 2018 Jul;13(3):203-222. doi: 10.1177/1556264618759877. Epub 2018 Apr 23.

Abstract

Participatory sensing applications collect personal data of monitored subjects along with their spatial or spatiotemporal stamps. The attributes of a monitored subject can be private, sensitive, or confidential information. Also, the spatial or spatiotemporal attributes are prone to inferential disclosure of private information. Although there is extensive problem-oriented literature on geoinformation disclosure, our work provides a clear guideline with practical relevance, containing the steps that a research campaign should follow to preserve the participants' privacy. We first examine the technical aspects of geoprivacy in the context of participatory sensing data. Then, we propose privacy-preserving steps in four categories, namely, ensuring secure and safe settings, actions prior to the start of a research survey, processing and analysis of collected data, and safe disclosure of datasets and research deliverables.

摘要

参与式传感应用程序会收集被监测对象的个人数据以及其空间或时空标记。被监测对象的属性可能是私密、敏感或机密信息。此外,空间或时空属性容易导致私人信息的推断性泄露。尽管有大量关于地理信息披露的面向问题的文献,但我们的工作提供了具有实际相关性的明确指导方针,包含研究活动为保护参与者隐私应遵循的步骤。我们首先在参与式传感数据的背景下研究地理隐私的技术方面。然后,我们从四个类别提出隐私保护步骤,即确保安全可靠的设置、研究调查开始前的行动、收集数据的处理与分析,以及数据集和研究成果的安全披露。

相似文献

1
A Geoprivacy by Design Guideline for Research Campaigns That Use Participatory Sensing Data.
J Empir Res Hum Res Ethics. 2018 Jul;13(3):203-222. doi: 10.1177/1556264618759877. Epub 2018 Apr 23.
2
Privacy in confidential administrative micro data: implementing statistical disclosure control in a secure computing environment.
J Empir Res Hum Res Ethics. 2014 Dec;9(5):8-15. doi: 10.1177/1556264614552799. Epub 2014 Oct 2.
3
Why does geoprivacy matter? The scientific publication of confidential data presented on maps.
J Empir Res Hum Res Ethics. 2014 Oct;9(4):34-45. doi: 10.1177/1556264614544103. Epub 2014 Aug 11.
4
Daily activity locations k-anonymity for the evaluation of disclosure risk of individual GPS datasets.
Int J Health Geogr. 2020 Mar 5;19(1):7. doi: 10.1186/s12942-020-00201-9.
6
The verified neighbor approach to geoprivacy: An improved method for geographic masking.
J Expo Sci Environ Epidemiol. 2018 Mar;28(2):109-118. doi: 10.1038/jes.2017.17. Epub 2017 Sep 20.
7
Reconciling public health common good and individual privacy: new methods and issues in geoprivacy.
Int J Health Geogr. 2022 Jan 19;21(1):1. doi: 10.1186/s12942-022-00300-9.
8
Systematic review of smartphone-based passive sensing for health and wellbeing.
J Biomed Inform. 2018 Jan;77:120-132. doi: 10.1016/j.jbi.2017.12.008. Epub 2017 Dec 14.
9
BPRF: Blockchain-based privacy-preserving reputation framework for participatory sensing systems.
PLoS One. 2019 Dec 5;14(12):e0225688. doi: 10.1371/journal.pone.0225688. eCollection 2019.
10
An anonymization-based privacy-preserving data collection protocol for digital health data.
Front Public Health. 2023 Mar 3;11:1125011. doi: 10.3389/fpubh.2023.1125011. eCollection 2023.

引用本文的文献

1
Geoprivacy in Neighbourhoods and Health Research: A Mini-Review of the Challenges and Best Practices in Epidemiological Studies.
Public Health Rev. 2022 Oct 27;43:1605105. doi: 10.3389/phrs.2022.1605105. eCollection 2022.
2
An Interdisciplinary Mixed-Methods Approach to Analyzing Urban Spaces: The Case of Urban Walkability and Bikeability.
Int J Environ Res Public Health. 2020 Sep 24;17(19):6994. doi: 10.3390/ijerph17196994.
3
Why Public Health Needs GIS: A Methodological Overview.
Ann GIS. 2020;26(1):1-12. doi: 10.1080/19475683.2019.1702099. Epub 2019 Dec 19.
4
Returning to our roots: The use of geospatial data for nurse-led community research.
Res Nurs Health. 2019 Dec;42(6):467-475. doi: 10.1002/nur.21984. Epub 2019 Oct 10.
5
Detecting Moments of Stress from Measurements of Wearable Physiological Sensors.
Sensors (Basel). 2019 Sep 3;19(17):3805. doi: 10.3390/s19173805.

本文引用的文献

4
Why does geoprivacy matter? The scientific publication of confidential data presented on maps.
J Empir Res Hum Res Ethics. 2014 Oct;9(4):34-45. doi: 10.1177/1556264614544103. Epub 2014 Aug 11.
5
Imputation of confidential data sets with spatial locations using disease mapping models.
Stat Med. 2014 May 20;33(11):1928-45. doi: 10.1002/sim.6078. Epub 2014 Jan 7.
6
MULTIPLE IMPUTATION FOR SHARING PRECISE GEOGRAPHIES IN PUBLIC USE DATA.
Ann Appl Stat. 2012 Mar 1;6(1):229-252. doi: 10.1214/11-AOAS506.
7
Unique in the Crowd: The privacy bounds of human mobility.
Sci Rep. 2013;3:1376. doi: 10.1038/srep01376.
8
Spatial generalization and aggregation of massive movement data.
IEEE Trans Vis Comput Graph. 2011 Feb;17(2):205-19. doi: 10.1109/TVCG.2010.44.
9
Geomasking sensitive health data and privacy protection: an evaluation using an E911 database.
Geocarto Int. 2010 Oct 1;25(6):443-452. doi: 10.1080/10106049.2010.496496.
10
Mapping health data: improved privacy protection with donut method geomasking.
Am J Epidemiol. 2010 Nov 1;172(9):1062-9. doi: 10.1093/aje/kwq248. Epub 2010 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验