纳米尺度以下受限几何中的离子传输:在稀释溶液中,欧姆接触电阻主导蛋白通道电导。

Ion Transport in Confined Geometries below the Nanoscale: Access Resistance Dominates Protein Channel Conductance in Diluted Solutions.

机构信息

Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I , Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain.

出版信息

ACS Nano. 2017 Oct 24;11(10):10392-10400. doi: 10.1021/acsnano.7b05529. Epub 2017 Sep 22.

Abstract

Synthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.

摘要

合成纳米孔和介观蛋白通道具有共同的特点,例如渗透离子与纳米通道之间静电相互作用的重要性。纳米尺度下的离子传输是在受限条件下发生的,因此,通常在微流控中做出的假设受到了挑战,例如界面效应,如接入电阻(AR)。在这里,我们表明,要根据通道离子选择性特性对电生理测量进行合理的解释,就需要考虑界面效应,直至界面效应在稀释溶液中主导蛋白通道的电导率。我们通过在含有不同浓度高分子量聚乙二醇(PEG)的电解质溶液中进行单通道电导测量,测量了大离子通道细菌孔蛋白 OmpF 的接入电阻。在带电荷和中性平面膜中进行的实验比较表明,脂质表面电荷会改变离子分布并确定接入电阻的值,这表明即使是对于大跨膜蛋白,脂质分子也不仅仅是被动支架。我们还发现,在稀释溶液中,接入电阻可能高达通道总电导的 80%,在这种情况下,电生理记录记录的基本上是系统的接入电阻,并且与孔特征的依赖性很小。这些发现可能对几种低纵横比的生物通道具有重要意义,这些通道在低离子强度和大分子拥挤的环境中执行其生理功能,而正是这两种条件增强了接入电阻的贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索