Suppr超能文献

花转变的逻辑:反向设计控制侧生器官身份的开关

The logic of the floral transition: Reverse-engineering the switch controlling the identity of lateral organs.

作者信息

Dinh Jean-Louis, Farcot Etienne, Hodgman Charlie

机构信息

Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom.

School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom.

出版信息

PLoS Comput Biol. 2017 Sep 20;13(9):e1005744. doi: 10.1371/journal.pcbi.1005744. eCollection 2017 Sep.

Abstract

Much laboratory work has been carried out to determine the gene regulatory network (GRN) that results in plant cells becoming flowers instead of leaves. However, this also involves the spatial distribution of different cell types, and poses the question of whether alternative networks could produce the same set of observed results. This issue has been addressed here through a survey of the published intercellular distribution of expressed regulatory genes and techniques both developed and applied to Boolean network models. This has uncovered a large number of models which are compatible with the currently available data. An exhaustive exploration had some success but proved to be unfeasible due to the massive number of alternative models, so genetic programming algorithms have also been employed. This approach allows exploration on the basis of both data-fitting criteria and parsimony of the regulatory processes, ruling out biologically unrealistic mechanisms. One of the conclusions is that, despite the multiplicity of acceptable models, an overall structure dominates, with differences mostly in alternative fine-grained regulatory interactions. The overall structure confirms the known interactions, including some that were not present in the training set, showing that current data are sufficient to determine the overall structure of the GRN. The model stresses the importance of relative spatial location, through explicit references to this aspect. This approach also provides a quantitative indication of how likely some regulatory interactions might be, and can be applied to the study of other developmental transitions.

摘要

为了确定导致植物细胞形成花而非叶的基因调控网络(GRN),人们开展了大量实验室工作。然而,这也涉及到不同细胞类型的空间分布,并引发了一个问题,即其他网络是否能产生相同的一组观测结果。本文通过对已发表的表达调控基因的细胞间分布以及开发并应用于布尔网络模型的技术进行调查,解决了这个问题。这揭示了大量与当前可用数据兼容的模型。详尽的探索取得了一些成功,但由于替代模型数量众多,证明是不可行的,因此也采用了遗传编程算法。这种方法允许在数据拟合标准和调控过程简约性的基础上进行探索,排除生物学上不现实的机制。其中一个结论是,尽管存在多种可接受的模型,但一个总体结构占主导地位,差异主要体现在替代的细粒度调控相互作用上。总体结构证实了已知的相互作用,包括一些在训练集中不存在的相互作用,表明当前数据足以确定GRN的总体结构。该模型通过明确提及这一方面,强调了相对空间位置的重要性。这种方法还提供了一些调控相互作用可能性的定量指标,并且可以应用于其他发育转变的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc6b/5624648/7b643125e83f/pcbi.1005744.g001.jpg

相似文献

1
The logic of the floral transition: Reverse-engineering the switch controlling the identity of lateral organs.
PLoS Comput Biol. 2017 Sep 20;13(9):e1005744. doi: 10.1371/journal.pcbi.1005744. eCollection 2017 Sep.
2
Gene regulatory network models for floral organ determination.
Methods Mol Biol. 2014;1110:441-69. doi: 10.1007/978-1-4614-9408-9_26.
3
Prediction of pairwise gene interaction using threshold logic.
Ann N Y Acad Sci. 2009 Mar;1158:276-86. doi: 10.1111/j.1749-6632.2008.03763.x.
4
Growing seed genes from time series data and thresholded Boolean networks with perturbation.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Jan-Feb;10(1):37-49. doi: 10.1109/TCBB.2012.169.
6
More than meets the eye: Emergent properties of transcription factors networks in Arabidopsis.
Biochim Biophys Acta Gene Regul Mech. 2017 Jan;1860(1):64-74. doi: 10.1016/j.bbagrm.2016.07.017. Epub 2016 Jul 30.
7
Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
Biosystems. 2017 May;155:29-41. doi: 10.1016/j.biosystems.2016.12.004. Epub 2017 Feb 28.
8
MicroRNAs in Control of Plant Development.
J Cell Physiol. 2016 Feb;231(2):303-13. doi: 10.1002/jcp.25125.
9
Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape.
PLoS One. 2008;3(11):e3626. doi: 10.1371/journal.pone.0003626. Epub 2008 Nov 3.
10
The Arabidopsis thaliana flower organ specification gene regulatory network determines a robust differentiation process.
J Theor Biol. 2010 Jun 7;264(3):971-83. doi: 10.1016/j.jtbi.2010.03.006. Epub 2010 Mar 18.

引用本文的文献

2
Inference of a Boolean Network From Causal Logic Implications.
Front Genet. 2022 Jun 16;13:836856. doi: 10.3389/fgene.2022.836856. eCollection 2022.
4
PlantSimLab - a modeling and simulation web tool for plant biologists.
BMC Bioinformatics. 2019 Oct 21;20(1):508. doi: 10.1186/s12859-019-3094-9.

本文引用的文献

1
A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network.
PLoS One. 2015 Feb 26;10(2):e0116973. doi: 10.1371/journal.pone.0116973. eCollection 2015.
2
Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis.
Plant Cell. 2013 Mar;25(3):820-33. doi: 10.1105/tpc.113.109355. Epub 2013 Mar 29.
3
A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice.
Dev Cell. 2013 Mar 25;24(6):612-22. doi: 10.1016/j.devcel.2013.02.013.
4
Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):4002-7. doi: 10.1073/pnas.1200636109. Epub 2012 Feb 15.
5
A data-driven integrative model of sepal primordium polarity in Arabidopsis.
Plant Cell. 2011 Dec;23(12):4318-33. doi: 10.1105/tpc.111.092619. Epub 2011 Dec 23.
7
SnapShot: Control of flowering in Arabidopsis.
Cell. 2010 Apr 30;141(3):550, 550.e1-2. doi: 10.1016/j.cell.2010.04.024.
8
Orchestration of floral initiation by APETALA1.
Science. 2010 Apr 2;328(5974):85-9. doi: 10.1126/science.1185244.
9
From decision to commitment: the molecular memory of flowering.
Mol Plant. 2009 Jul;2(4):628-642. doi: 10.1093/mp/ssp031.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验