Wittmann Dominik M, Krumsiek Jan, Saez-Rodriguez Julio, Lauffenburger Douglas A, Klamt Steffen, Theis Fabian J
Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
BMC Syst Biol. 2009 Sep 28;3:98. doi: 10.1186/1752-0509-3-98.
The understanding of regulatory and signaling networks has long been a core objective in Systems Biology. Knowledge about these networks is mainly of qualitative nature, which allows the construction of Boolean models, where the state of a component is either 'off' or 'on'. While often able to capture the essential behavior of a network, these models can never reproduce detailed time courses of concentration levels. Nowadays however, experiments yield more and more quantitative data. An obvious question therefore is how qualitative models can be used to explain and predict the outcome of these experiments.
In this contribution we present a canonical way of transforming Boolean into continuous models, where the use of multivariate polynomial interpolation allows transformation of logic operations into a system of ordinary differential equations (ODE). The method is standardized and can readily be applied to large networks. Other, more limited approaches to this task are briefly reviewed and compared. Moreover, we discuss and generalize existing theoretical results on the relation between Boolean and continuous models. As a test case a logical model is transformed into an extensive continuous ODE model describing the activation of T-cells. We discuss how parameters for this model can be determined such that quantitative experimental results are explained and predicted, including time-courses for multiple ligand concentrations and binding affinities of different ligands. This shows that from the continuous model we may obtain biological insights not evident from the discrete one.
The presented approach will facilitate the interaction between modeling and experiments. Moreover, it provides a straightforward way to apply quantitative analysis methods to qualitatively described systems.
对调控和信号网络的理解长期以来一直是系统生物学的核心目标。关于这些网络的知识主要是定性的,这使得可以构建布尔模型,其中组件的状态要么是“关闭”要么是“开启”。虽然这些模型通常能够捕捉网络的基本行为,但它们永远无法重现浓度水平的详细时间进程。然而如今,实验产生了越来越多的定量数据。因此一个明显的问题是定性模型如何能够用于解释和预测这些实验的结果。
在本论文中,我们提出了一种将布尔模型转换为连续模型的规范方法,其中使用多元多项式插值可将逻辑运算转换为常微分方程(ODE)系统。该方法是标准化的,并且可以很容易地应用于大型网络。我们简要回顾并比较了其他针对此任务的更有限的方法。此外,我们讨论并推广了关于布尔模型和连续模型之间关系的现有理论结果。作为一个测试案例,一个逻辑模型被转换为一个描述T细胞激活的广泛的连续ODE模型。我们讨论了如何确定该模型的参数,以便解释和预测定量实验结果,包括多种配体浓度的时间进程以及不同配体的结合亲和力。这表明从连续模型中我们可以获得离散模型中不明显的生物学见解。
所提出的方法将促进建模与实验之间的相互作用。此外,它提供了一种将定量分析方法应用于定性描述系统的直接方式。