Suppr超能文献

局部细胞邻域控制细胞竞争中的增殖。

Local cellular neighborhood controls proliferation in cell competition.

作者信息

Bove Anna, Gradeci Daniel, Fujita Yasuyuki, Banerjee Shiladitya, Charras Guillaume, Lowe Alan R

机构信息

London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom.

Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom.

出版信息

Mol Biol Cell. 2017 Nov 7;28(23):3215-3228. doi: 10.1091/mbc.E17-06-0368. Epub 2017 Sep 20.

Abstract

Cell competition is a quality-control mechanism through which tissues eliminate unfit cells. Cell competition can result from short-range biochemical inductions or long-range mechanical cues. However, little is known about how cell-scale interactions give rise to population shifts in tissues, due to the lack of experimental and computational tools to efficiently characterize interactions at the single-cell level. Here, we address these challenges by combining long-term automated microscopy with deep-learning image analysis to decipher how single-cell behavior determines tissue makeup during competition. Using our high-throughput analysis pipeline, we show that competitive interactions between MDCK wild-type cells and cells depleted of the polarity protein scribble are governed by differential sensitivity to local density and the cell type of each cell's neighbors. We find that local density has a dramatic effect on the rate of division and apoptosis under competitive conditions. Strikingly, our analysis reveals that proliferation of the winner cells is up-regulated in neighborhoods mostly populated by loser cells. These data suggest that tissue-scale population shifts are strongly affected by cellular-scale tissue organization. We present a quantitative mathematical model that demonstrates the effect of neighbor cell-type dependence of apoptosis and division in determining the fitness of competing cell lines.

摘要

细胞竞争是一种质量控制机制,组织通过该机制清除不适合的细胞。细胞竞争可能源于短程生化诱导或长程机械信号。然而,由于缺乏能够有效表征单细胞水平相互作用的实验和计算工具,关于细胞尺度的相互作用如何导致组织中的群体变化,人们了解甚少。在这里,我们通过将长期自动显微镜与深度学习图像分析相结合来应对这些挑战,以解读在竞争过程中单细胞行为如何决定组织构成。使用我们的高通量分析流程,我们表明MDCK野生型细胞与缺失极性蛋白scribble的细胞之间的竞争相互作用受对局部密度和每个细胞邻居的细胞类型的差异敏感性支配。我们发现局部密度在竞争条件下对分裂和凋亡速率有显著影响。引人注目的是,我们的分析表明,在主要由失败者细胞组成的邻域中,胜利者细胞的增殖上调。这些数据表明,组织尺度的群体变化受到细胞尺度的组织组织的强烈影响。我们提出了一个定量数学模型,该模型展示了凋亡和分裂的邻域细胞类型依赖性在确定竞争细胞系适应性方面的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a5f/5687024/f970d9ae07ef/3215fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验