Baloch Ahmer A B, Aly Shahzada P, Hossain Mohammad I, El-Mellouhi Fedwa, Tabet Nouar, Alharbi Fahhad H
College of Science & Engineering (CSE), Hamad Bin Khalifa University, Doha, Qatar.
Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha, Qatar.
Sci Rep. 2017 Sep 20;7(1):11984. doi: 10.1038/s41598-017-12158-0.
Advances in computational materials have paved a way to design efficient solar cells by identifying the optimal properties of the device layers. Conventionally, the device optimization has been governed by single or double descriptors for an individual layer; mostly the absorbing layer. However, the performance of the device depends collectively on all the properties of the material and the geometry of each layer in the cell. To address this issue of multi-property optimization and to avoid the paradigm of reoccurring materials in the solar cell field, a full space material-independent optimization approach is developed and presented in this paper. The method is employed to obtain an optimized material data set for maximum efficiency and for targeted functionality for each layer. To ensure the robustness of the method, two cases are studied; namely perovskite solar cells device optimization and cadmium-free CIGS solar cell. The implementation determines the desirable optoelectronic properties of transport mediums and contacts that can maximize the efficiency for both cases. The resulted data sets of material properties can be matched with those in materials databases or by further microscopic material design. Moreover, the presented multi-property optimization framework can be extended to design any solid-state device.
计算材料学的进展为通过识别器件层的最佳特性来设计高效太阳能电池铺平了道路。传统上,器件优化一直由单个或两个描述符来控制单个层;主要是吸收层。然而,器件的性能共同取决于材料的所有特性以及电池中每层的几何形状。为了解决多特性优化问题并避免太阳能电池领域中反复出现材料的模式,本文开发并提出了一种完全独立于空间材料的优化方法。该方法用于获得针对每层的最大效率和目标功能的优化材料数据集。为确保该方法的稳健性,研究了两种情况;即钙钛矿太阳能电池器件优化和无镉铜铟镓硒(CIGS)太阳能电池。该实现确定了可使两种情况下的效率最大化的传输介质和接触的理想光电特性。所得的材料特性数据集可与材料数据库中的数据匹配,或通过进一步的微观材料设计来匹配。此外,所提出的多特性优化框架可扩展到设计任何固态器件。