Tsikritzis Dimitris, Chatzimanolis Konstantinos, Tzoganakis Nikolaos, Bellani Sebastiano, Zappia Marilena Isabella, Bianca Gabriele, Curreli Nicola, Buha Joka, Kriegel Ilka, Antonatos Nikolas, Sofer Zdeněk, Krassas Miron, Rogdakis Konstantinos, Bonaccorso Francesco, Kymakis Emmanuel
Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU) Heraklion 71410 Crete Greece
Institute of Emerging Technologies (i-EMERGE) of HMU Research Center Heraklion 71410 Crete Greece.
Sustain Energy Fuels. 2022 Oct 24;6(23):5345-5359. doi: 10.1039/d2se01109c. eCollection 2022 Nov 22.
Hybrid organic-inorganic perovskite solar cells (PSCs) are attractive printable, flexible, and cost-effective optoelectronic devices constituting an alternative technology to conventional Si-based ones. The incorporation of low-dimensional materials, such as two-dimensional (2D) materials, into the PSC structure is a promising route for interfacial and bulk perovskite engineering, paving the way for improved power conversion efficiency (PCE) and long-term stability. In this work, we investigate the incorporation of 2D bismuth telluride iodide (BiTeI) flakes as additives in the perovskite active layer, demonstrating their role in tuning the interfacial energy-level alignment for optimum device performance. By varying the concentration of BiTeI flakes in the perovskite precursor solution between 0.008 mg mL and 0.1 mg mL, a downward shift in the energy levels of the perovskite results in an optimal alignment of the energy levels of the materials across the cell structure, as supported by device simulations. Thus, the cell fill factor (FF) increases with additive concentration, reaching values greater than 82%, although the suppression of open circuit voltage ( ) is reported beyond an additive concentration threshold of 0.03 mg mL. The most performant devices delivered a PCE of 18.3%, with an average PCE showing a +8% increase compared to the reference devices. This work demonstrates the potential of 2D-material-based additives for the engineering of PSCs energy level optimization at perovskite/charge transporting layer interfaces.
有机-无机杂化钙钛矿太阳能电池(PSC)是具有吸引力的可印刷、柔性且经济高效的光电器件,构成了传统硅基器件的替代技术。将低维材料,如二维(2D)材料,纳入PSC结构是进行界面和体相钙钛矿工程的一条有前途的途径,为提高功率转换效率(PCE)和长期稳定性铺平了道路。在这项工作中,我们研究了将二维碲化铋碘(BiTeI)薄片作为添加剂纳入钙钛矿活性层,展示了它们在调整界面能级排列以实现最佳器件性能方面的作用。通过在钙钛矿前驱体溶液中改变BiTeI薄片的浓度在0.008 mg/mL至0.1 mg/mL之间,钙钛矿能级的向下移动导致了整个电池结构中材料能级的最佳排列,这得到了器件模拟的支持。因此,电池填充因子(FF)随着添加剂浓度的增加而增加,达到大于82%的值,尽管据报道在添加剂浓度阈值0.03 mg/mL以上开路电压( )会受到抑制。性能最佳的器件实现了18.3%的PCE,与参考器件相比,平均PCE提高了8%。这项工作展示了基于二维材料的添加剂在PSC钙钛矿/电荷传输层界面能级优化工程中的潜力。