Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000, Kajang, Selangor, Malaysia.
Institute of Power Engineering, Universiti Tenaga Nasional, 43000, Kajang, Selangor, Malaysia.
Sci Rep. 2021 Apr 8;11(1):7741. doi: 10.1038/s41598-021-86175-5.
The optimization of thermophotovoltaic (TPV) cell efficiency is essential since it leads to a significant increase in the output power. Typically, the optimization of InGaAs TPV cell has been limited to single variable such as the emitter thickness, while the effects of the variation in other design variables are assumed to be negligible. The reported efficiencies of InGaAs TPV cell mostly remain < 15%. Therefore, this work develops a multi-variable or multi-dimensional optimization of InGaAs TPV cell using the real coded genetic algorithm (RCGA) at various radiation temperatures. RCGA was developed using Visual Basic and it was hybridized with Silvaco TCAD for the electrical characteristics simulation. Under radiation temperatures from 800 to 2000 K, the optimized InGaAs TPV cell efficiency increases by an average percentage of 11.86% (from 8.5 to 20.35%) as compared to the non-optimized structure. It was found that the incorporation of a thicker base layer with the back-barrier layers enhances the separation of charge carriers and increases the collection of photo-generated carriers near the band-edge, producing an optimum output power of 0.55 W/cm (cell efficiency of 22.06%, without antireflection coating) at 1400 K radiation spectrum. The results of this work demonstrate the great potential to generate electricity sustainably from industrial waste heat and the multi-dimensional optimization methodology can be adopted to optimize semiconductor devices, such as solar cell, TPV cell and photodetectors.
提高热光伏(TPV)电池效率至关重要,因为这可以显著提高输出功率。通常,优化 InGaAs TPV 电池仅限于单个变量,如发射器厚度,而其他设计变量的变化影响则被认为可以忽略不计。已报道的 InGaAs TPV 电池的效率大多仍低于 15%。因此,这项工作使用实码遗传算法(RCGA)在不同的辐射温度下对 InGaAs TPV 电池进行多变量或多维优化。RCGA 是使用 Visual Basic 开发的,并与 Silvaco TCAD 混合使用,以进行电气特性模拟。在 800 到 2000 K 的辐射温度下,与非优化结构相比,优化后的 InGaAs TPV 电池效率平均提高了 11.86%(从 8.5%提高到 20.35%)。研究发现,在背势垒层中加入较厚的基底层可以增强载流子的分离,并增加带边缘附近光生载流子的收集,从而在 1400 K 的辐射光谱下产生 0.55 W/cm 的最佳输出功率(无抗反射涂层时,电池效率为 22.06%)。这项工作的结果表明,从工业废热中可持续发电具有巨大潜力,并且可以采用多维优化方法来优化半导体器件,如太阳能电池、TPV 电池和光电探测器。