Suppr超能文献

一种用于基准测试和生物医学问题的改进型平均灰狼优化方法。

A Modified Mean Gray Wolf Optimization Approach for Benchmark and Biomedical Problems.

作者信息

Singh Narinder, Singh S B

机构信息

Department of Mathematics, Punjabi University, Patiala, India.

出版信息

Evol Bioinform Online. 2017 Sep 11;13:1176934317729413. doi: 10.1177/1176934317729413. eCollection 2017.

Abstract

A modified variant of gray wolf optimization algorithm, namely, mean gray wolf optimization algorithm has been developed by modifying the position update (encircling behavior) equations of gray wolf optimization algorithm. The proposed variant has been tested on 23 standard benchmark well-known test functions (unimodal, multimodal, and fixed-dimension multimodal), and the performance of modified variant has been compared with particle swarm optimization and gray wolf optimization. Proposed algorithm has also been applied to the classification of 5 data sets to check feasibility of the modified variant. The results obtained are compared with many other meta-heuristic approaches, ie, gray wolf optimization, particle swarm optimization, population-based incremental learning, ant colony optimization, etc. The results show that the performance of modified variant is able to find best solutions in terms of high level of accuracy in classification and improved local optima avoidance.

摘要

一种灰狼优化算法的改进变体,即均值灰狼优化算法,通过修改灰狼优化算法的位置更新(包围行为)方程而开发。该改进变体已在23个标准基准知名测试函数(单峰、多峰和固定维度多峰)上进行了测试,并将改进变体的性能与粒子群优化和灰狼优化进行了比较。所提出的算法还应用于5个数据集的分类,以检验改进变体的可行性。将获得的结果与许多其他元启发式方法进行了比较,即灰狼优化、粒子群优化、基于群体的增量学习、蚁群优化等。结果表明,改进变体在分类精度高和避免局部最优方面能够找到最佳解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ae/5598817/7f971b2de3a5/10.1177_1176934317729413-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验