Suppr超能文献

溶酶体贮积症中的线粒体功能障碍

Mitochondrial Dysfunction in Lysosomal Storage Disorders.

作者信息

de la Mata Mario, Cotán David, Villanueva-Paz Marina, de Lavera Isabel, Álvarez-Córdoba Mónica, Luzón-Hidalgo Raquel, Suárez-Rivero Juan M, Tiscornia Gustavo, Oropesa-Ávila Manuel

机构信息

Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Sevilla 41013, Spain.

Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal.

出版信息

Diseases. 2016 Oct 11;4(4):31. doi: 10.3390/diseases4040031.

Abstract

Lysosomal storage diseases (LSDs) describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS), where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm), diminished ATP production and increased generation of reactive oxygen species (ROS). Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD), the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase). Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph) in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

摘要

溶酶体贮积症(LSDs)是一组罕见的遗传性代谢紊乱疾病,具有异质性,由溶酶体水解酶或转运蛋白的缺失或功能丧失引起,导致未消化物质在溶酶体中逐渐积累。物质的积累会影响溶酶体和其他细胞器的功能,导致诸如自噬受损、线粒体功能障碍、炎症和细胞凋亡等继发性改变。LSDs常累及中枢神经系统(CNS),其中神经元功能障碍或丧失会导致进行性神经退行性变和过早死亡。许多LSDs表现出线粒体功能障碍的迹象,包括线粒体形态改变、线粒体膜电位(ΔΨm)降低、ATP生成减少和活性氧(ROS)生成增加。此外,自噬通量降低可能导致功能失调的线粒体持续存在。戈谢病(GD)是患病率最高的LSD,由GBA1基因突变引起,导致β-葡萄糖脑苷脂酶(GCase)活性缺陷和不足。GCase的催化活性降低和/或稳定性降低导致葡萄糖神经酰胺(GlcCer)和葡萄糖神经鞘氨醇(GlcSph)在巨噬细胞和内脏器官的溶酶体中积累。据报道,在许多GD的细胞和小鼠模型中都发生了线粒体功能障碍。本文的目的是综述LSDs中线粒体功能障碍的现有知识及其影响。

相似文献

1
Mitochondrial Dysfunction in Lysosomal Storage Disorders.
Diseases. 2016 Oct 11;4(4):31. doi: 10.3390/diseases4040031.
3
The relationship between glucocerebrosidase mutations and Parkinson disease.
J Neurochem. 2016 Oct;139 Suppl 1(Suppl Suppl 1):77-90. doi: 10.1111/jnc.13385. Epub 2016 Feb 10.
4
Neuronopathic Gaucher disease: Beyond lysosomal dysfunction.
Front Mol Neurosci. 2022 Aug 3;15:934820. doi: 10.3389/fnmol.2022.934820. eCollection 2022.
6
Coenzyme Q partially restores pathological alterations in a macrophage model of Gaucher disease.
Orphanet J Rare Dis. 2017 Feb 6;12(1):23. doi: 10.1186/s13023-017-0574-8.
8
Autophagy and Lysosome Storage Disorders.
Adv Exp Med Biol. 2020;1207:87-102. doi: 10.1007/978-981-15-4272-5_5.
9
Animal Models for the Study of Gaucher Disease.
Int J Mol Sci. 2023 Nov 7;24(22):16035. doi: 10.3390/ijms242216035.
10
Cellular and biochemical response to chaperone versus substrate reduction therapies in neuropathic Gaucher disease.
PLoS One. 2021 Oct 25;16(10):e0247211. doi: 10.1371/journal.pone.0247211. eCollection 2021.

引用本文的文献

1
sPLA2-IIA modifies progranulin deficiency phenotypes in mouse models.
Mol Neurodegener. 2025 Jun 17;20(1):72. doi: 10.1186/s13024-025-00863-8.
2
Mitochondrial dysfunction is a hallmark of woody breast myopathy in broiler chickens.
Front Physiol. 2025 Feb 17;16:1543788. doi: 10.3389/fphys.2025.1543788. eCollection 2025.
3
Coronary Microvascular Dysfunction Is Associated With Augmented Lysosomal Signaling in Hypercholesterolemic Mice.
J Am Heart Assoc. 2024 Dec 3;13(23):e037460. doi: 10.1161/JAHA.124.037460. Epub 2024 Nov 27.
5
Clinical staging of Anderson-Fabry cardiomyopathy: An operative proposal.
Heart Fail Rev. 2024 Mar;29(2):431-444. doi: 10.1007/s10741-023-10370-x. Epub 2023 Nov 25.
6
STING signaling in the brain: Molecular threats, signaling activities, and therapeutic challenges.
Neuron. 2024 Feb 21;112(4):539-557. doi: 10.1016/j.neuron.2023.10.014. Epub 2023 Nov 8.
9
Accumulation of α-synuclein mediates podocyte injury in Fabry nephropathy.
J Clin Invest. 2023 Jun 1;133(11):e157782. doi: 10.1172/JCI157782.
10
Loss of pex5 sensitizes zebrafish to fasting due to deregulated mitochondria, mTOR, and autophagy.
Cell Mol Life Sci. 2023 Feb 23;80(3):69. doi: 10.1007/s00018-023-04700-3.

本文引用的文献

1
The lysosomal storage disease continuum with ageing-related neurodegenerative disease.
Ageing Res Rev. 2016 Dec;32:104-121. doi: 10.1016/j.arr.2016.07.005. Epub 2016 Aug 8.
2
Mitochondrial dysfunction in fibroblasts derived from patients with Niemann-Pick type C disease.
Arch Biochem Biophys. 2016 Mar 1;593:50-9. doi: 10.1016/j.abb.2016.02.012. Epub 2016 Feb 8.
3
Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity.
Neurobiol Dis. 2016 Jun;90:3-19. doi: 10.1016/j.nbd.2015.10.011. Epub 2015 Oct 19.
5
Mitochondrial dysfunction associated with glucocerebrosidase deficiency.
Neurobiol Dis. 2016 Jun;90:43-50. doi: 10.1016/j.nbd.2015.09.006. Epub 2015 Sep 24.
7
Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight.
Biomed Pharmacother. 2015 Aug;74:101-10. doi: 10.1016/j.biopha.2015.07.025. Epub 2015 Aug 7.
9
Mitochondrial quality control pathways as determinants of metabolic health.
Bioessays. 2015 Aug;37(8):867-76. doi: 10.1002/bies.201500013. Epub 2015 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验