Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Langmuir. 2017 Oct 10;33(40):10623-10631. doi: 10.1021/acs.langmuir.7b02646. Epub 2017 Sep 29.
Fouling has been a persistent issue within applications ranging from membrane separation to biomedical implantation. Research to date focuses on fouling-resistant coatings, where electrical conductivity is unnecessary. In this study, we report the synthesis of multifunctional thin films with both fouling resistance and electrical conductivity for their potential applications in the electrolysis-based self-cleaning of separation membranes and in the field of bioelectronics. This unique combination of properties results in multifunctional coatings that are a zwitterionic derivative of intrinsically conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) synthesized via oxidative chemical vapor deposition (oCVD). Their fouling resistance is shown to be comparable to that of known dielectric fouling-resistant surfaces, such as a poly(4-vinylpyridine)-co-divinylbenzene (p4VP-DVB)-derived zwitterionic coating, an amphiphilic poly(1H,1H,2H,2H-perfluorodecyl acrylate-co-2-hydroxyethyl methacrylate) (pPFDA-HEMA) coating, and a glass surface, and are far superior to the fouling resistance of gold or polydimethylsiloxane (PDMS) surfaces. The fouling resistances of seven surfaces are quantitatively characterized by molecular force probe (MFP) analysis. In addition, four-point probe electrical measurements, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), variable-angle spectroscopic ellipsometry (VASE), profilometry, water contact angle (WCA) measurements, surface ζ-potential measurements, and atomic force microscopy (AFM) were employed to characterize the physiochemical properties and morphology of the different surfaces.
污染一直是膜分离到生物医学植入等应用中的一个持续存在的问题。迄今为止的研究主要集中在抗污染涂层上,而这些涂层并不需要导电性。在这项研究中,我们报告了多功能薄膜的合成,这些薄膜具有抗污染和导电性,可潜在应用于基于电解的分离膜自清洁和生物电子学领域。这种独特的性能组合导致多功能涂层成为一种两性离子衍生物,其通过氧化化学气相沉积(oCVD)合成的本征导电聚合物聚(3,4-亚乙基二氧噻吩)(PEDOT)。它们的抗污染能力与已知的介电抗污染表面相当,如聚(4-乙烯基吡啶)-共-二乙烯基苯(p4VP-DVB)衍生的两性离子涂层、两亲性聚(1H,1H,2H,2H-全氟癸基丙烯酸酯-共-2-羟乙基甲基丙烯酸酯)(pPFDA-HEMA)涂层和玻璃表面,远远优于金或聚二甲基硅氧烷(PDMS)表面的抗污染能力。通过分子力探针(MFP)分析对七种表面的抗污染能力进行了定量表征。此外,还采用四点探针电测量、傅里叶变换红外光谱(FTIR)、X 射线光电子能谱(XPS)、变角光谱椭圆术(VASE)、轮廓仪、水接触角(WCA)测量、表面 ζ-电位测量和原子力显微镜(AFM)来表征不同表面的物理化学性质和形态。