Millennium Pain Center, Bloomington, IL; Illinois Wesleyan University, Bloomington, Illinois.
Millennium Pain Center, Bloomington, Illinois; University of Illinois at Urbana-Champaign, Champaign, Illinois.
Pain Physician. 2017 Sep;20(6):E915-E922.
Radiofrequency (RF) ablation for denervation has been utilized for decades in chronic pain management. This relies on the proper targeting of the affected nerve which may be obtained by creating an ablation lesion with a shape and volume that optimizes targeting. Various systems designed to improve lesion size are available. These include cooling the active tip (cooled-RF) and protruding the RF electrode outside the active tip (PERF).
This study compares lesion volumes of 3 commercially available RF systems: cooled-RF, "V" shaped active cannula and protruding electrode (18 g and 20 g), and monopolar RF (MRF; 16 g, 18 g, and 20 g).
Ex vivo study using clinically relevant conditions.
Biophysical laboratory in an academic institution.
RF ablation lesions were generated in additive-free chicken breast specimens (n = 10) with the RF probes fully inserted in them. For cooled RF, a 17 g probe (4 mm active tip) was used. RF was applied for 150 seconds at 60°C. PERF was applied using 18 g or 20 g introducers (10 mm active tip) for either 90 or 150 seconds at 80°C. For MRF ablation, introducers diameter were 16 g, 18 g, or 20 g (10 mm active tip), while RF was applied for 90 seconds at 80°C. Tissues were dissected through the midpoint of the lesion, and measurements of the longitudinal, transversal, and depth lengths were taken and used to calculate the lesion volume. Measurements from the distal edge in the transverse and longitudinal directions were also recorded. One-way ANOVA was used to determine statistical significance between volume means (P < 0.05).
Mean lesion volume with cooled RF (595 mm3) is significantly larger than any other mean volume measured. The second largest volume is produced with MRF using a 16 g introducer (360 mm3), which is significantly larger than those obtained with 18 g or 20 g. This is also significantly larger than the one obtained with PERF using an 18 g introducer. Mean lesion volume produced with PERF (80°C for 90 seconds) and an 18 g diameter tip (215 mm3) is significantly larger than the respective one produced with MRF (169 mm3). Increasing lesioning time to 150 seconds significantly increases the volume (283 mm3). Using a 20 g tip produces the smallest lesions at 80°C for 90 seconds with either PERF or MRF, although a lesioning time of 150 seconds makes it significantly larger (207 mm3).
The study is ex vivo and therefore does not account for the dynamic effects of the anatomy and physiology of a living organism.
The results indicate that the lesion produced with a cooled-RF system (17 g, 4 mm tip) is significantly larger than that produced with either of the other systems trialed (18 g or 20 g, 10 mm active tip protruding electrode or 16 g, 18 g, or 20 g monopolar electrode). Interestingly, a 16 g, 10 mm active tip monopolar electrode produced a larger lesion than the one produced with the 18 g protruding electrode. Key words: Radiofrequency, ablation, lesion shape, lesion size, cooled-RF, protruding electrode RF, monopolar RF.
射频 (RF) 消融用于神经失活已在慢性疼痛管理中使用了数十年。这依赖于对受影响神经的正确靶向,这可以通过创建具有优化靶向的消融病变形状和体积来实现。有各种旨在改善病变大小的系统可用。这些包括冷却活性尖端(冷 RF)和突出 RF 电极超出活性尖端(PERF)。
本研究比较了 3 种市售 RF 系统的病变体积:冷 RF、“V”形活性套管和突出电极(18 g 和 20 g)以及单极 RF(MRF;16 g、18 g 和 20 g)。
使用临床相关条件的离体研究。
学术机构的生物物理实验室。
在临床相关条件下,使用 RF 探头完全插入的添加剂免费鸡胸标本(n = 10)生成 RF 消融病变。对于冷 RF,使用 17 g 探头(4 mm 活性尖端)。在 60°C 下施加 RF 150 秒。PERF 使用 18 g 或 20 g 导入器(10 mm 活性尖端)施加 90 或 150 秒,温度为 80°C。对于 MRF 消融,引入器直径为 16 g、18 g 或 20 g(10 mm 活性尖端),同时施加 80°C 的 RF 90 秒。在病变的中点通过组织解剖,测量病变的纵向、横向和深度长度,并用于计算病变体积。还记录了横向和纵向方向上从远端边缘的测量值。使用单向方差分析确定体积均值之间的统计学意义(P < 0.05)。
冷 RF(595 mm3)的平均病变体积明显大于其他任何平均体积。第二大体积是使用 16 g 引入器的 MRF 产生的(360 mm3),明显大于使用 18 g 或 20 g 获得的体积。这也明显大于使用 18 g 引入器的 PERF 获得的体积。PERF(90 秒 80°C)和直径为 18 g 的电极(215 mm3)产生的平均病变体积明显大于 MRF(169 mm3)。将病变时间延长至 150 秒可显著增加体积(283 mm3)。使用 20 g 尖端在 80°C 下进行 90 秒的 PERF 或 MRF 可产生最小的病变,尽管 150 秒的病变时间使其明显增大(207 mm3)。
该研究是离体研究,因此未考虑活体解剖和生理学的动态影响。
结果表明,与试验的其他系统(18 g 或 20 g,10 mm 活性尖端突出电极或 16 g、18 g 或 20 g 单极电极)相比,冷 RF 系统(17 g,4 mm 尖端)产生的病变明显更大。有趣的是,16 g、10 mm 活性尖端单极电极产生的病变比 18 g 突出电极产生的病变更大。关键词:射频、消融、病变形状、病变大小、冷 RF、突出电极 RF、单极 RF。