Suppr超能文献

个体化预测处于精神病高危状态的个体发生精神病。

Individualized prediction of psychosis in subjects with an at-risk mental state.

机构信息

Division of Psychiatry, School of Clinical Sciences, University of Edinburgh, The Royal Edinburgh Hospital, Morningside Park, UK.

Institute for Adaptive and Neural Computation, University of Edinburgh, UK.

出版信息

Schizophr Res. 2019 Dec;214:18-23. doi: 10.1016/j.schres.2017.08.061. Epub 2017 Sep 19.

Abstract

Early intervention strategies in psychosis would significantly benefit from the identification of reliable prognostic biomarkers. Pattern classification methods have shown the feasibility of an early diagnosis of psychosis onset both in clinical and familial high-risk populations. Here we were interested in replicating our previous classification findings using an independent cohort at clinical high risk for psychosis, drawn from the prospective FePsy (Fruherkennung von Psychosen) study. The same neuroanatomical-based pattern classification pipeline, consisting of a linear Support Vector Machine (SVM) and a Recursive Feature Selection (RFE) achieved 74% accuracy in predicting later onset of psychosis. The discriminative neuroanatomical pattern underlying this finding consisted of many brain areas across all four lobes and the cerebellum. These results provide proof-of-concept that the early diagnosis of psychosis is feasible using neuroanatomical-based pattern recognition.

摘要

精神病的早期干预策略将极大地受益于可靠预后生物标志物的识别。模式分类方法已经表明,在临床和家族性高危人群中,精神病发病的早期诊断具有可行性。在这里,我们使用来自前瞻性 FePsy(精神病早期发现)研究的临床高危精神病的独立队列,对我们之前的分类发现进行了复制。相同的基于神经解剖学的模式分类管道,包括线性支持向量机(SVM)和递归特征选择(RFE),在预测精神病的后期发病方面实现了 74%的准确率。这一发现的判别神经解剖模式包括四个脑叶和小脑的许多大脑区域。这些结果提供了概念验证,即使用基于神经解剖学的模式识别可以实现精神病的早期诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验