Suppr超能文献

使用神经解剖学模式分类预测精神病前驱期的结局。

Prediction of outcome in the psychosis prodrome using neuroanatomical pattern classification.

作者信息

Kambeitz-Ilankovic Lana, Meisenzahl Eva M, Cabral Carlos, von Saldern Sebastian, Kambeitz Joseph, Falkai Peter, Möller Hans-Jürgen, Reiser Maximilian, Koutsouleris Nikolaos

机构信息

Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.

Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.

出版信息

Schizophr Res. 2016 Jun;173(3):159-165. doi: 10.1016/j.schres.2015.03.005. Epub 2015 Mar 26.

Abstract

To date, research into the biomarker-aided early recognition of psychosis has focused on predicting the transition likelihood of clinically defined individuals with different at-risk mental states (ARMS) based on structural (and functional) brain changes. However, it is currently unknown whether neuroimaging patterns could be identified to facilitate the individualized prediction of symptomatic and functional recovery. Therefore, we investigated whether cortical surface alterations analyzed by means of multivariate pattern recognition methods could enable the single-subject identification of functional outcomes in twenty-seven ARMS individuals. Subjects were dichotomized into 'good' vs. 'poor' outcome groups on average 4years after the baseline MRI scan using a Global Assessment of Functioning (GAF) threshold of 70. Cortical surface-based pattern classification predicted good (N=14) vs. poor outcome status (N=13) at follow-up with an accuracy of 82% as determined by nested leave-one-cross-validation. Neuroanatomical prediction involved cortical area reductions in superior temporal, inferior frontal and inferior parietal areas and was not confounded by functional impairment at baseline, or antipsychotic medication and transition status over the follow-up period. The prediction model's decision scores were correlated with positive and general symptom scores in the ARMS group at follow-up, whereas negative symptoms were not linked to predicted poorer functional outcome. These findings suggest that poorer functional outcomes are associated with non-resolving attenuated psychosis and could be predicted at the single-subject level using multivariate neuroanatomical risk stratification methods. However, the generalizability and specificity of the suggested prediction model should be thoroughly investigated in future large-scale and cross-diagnostic MRI studies.

摘要

迄今为止,对生物标志物辅助早期识别精神病的研究主要集中在基于大脑结构(和功能)变化来预测具有不同高危精神状态(ARMS)的临床确诊个体的转变可能性。然而,目前尚不清楚是否能够识别神经影像学模式以促进对症状性和功能恢复的个体化预测。因此,我们研究了通过多变量模式识别方法分析的皮质表面改变是否能够在27名ARMS个体中实现对功能结局的单受试者识别。在基线MRI扫描平均4年后,使用功能总体评定量表(GAF)阈值70将受试者分为“良好”与“不良”结局组。通过嵌套留一交叉验证确定,基于皮质表面的模式分类在随访时预测良好结局(N = 14)与不良结局状态(N = 13)的准确率为82%。神经解剖学预测涉及颞上回、额下回和顶下小叶皮质区域的减少,并且不受基线时的功能损害、随访期间的抗精神病药物治疗和转变状态的影响。预测模型的决策分数与随访时ARMS组的阳性和一般症状评分相关,而阴性症状与预测的较差功能结局无关。这些发现表明,较差的功能结局与未缓解的轻度精神病有关,并且可以使用多变量神经解剖学风险分层方法在单受试者水平上进行预测。然而,建议的预测模型的普遍性和特异性应在未来的大规模和跨诊断MRI研究中进行深入研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验