Department of Psychiatry, University of Basel, Basel, Switzerland.
Schizophr Bull. 2013 Sep;39(5):1105-14. doi: 10.1093/schbul/sbs095. Epub 2012 Sep 11.
The at-risk mental state for psychosis (ARMS) and the first episode of psychosis have been associated with structural brain abnormalities that could aid in the individualized early recognition of psychosis. However, it is unknown whether the development of these brain alterations predates the clinical deterioration of at-risk individuals, or alternatively, whether it parallels the transition to psychosis at the single-subject level.
We evaluated the performance of an magnetic resonance imaging (MRI)-based classification system in classifying disease stages from at-risk individuals with subsequent transition to psychosis (ARMS-T) and patients with first-episode psychosis (FE). Pairwise and multigroup biomarkers were constructed using the structural MRI data of 22 healthy controls (HC), 16 ARMS-T and 23 FE subjects. The performance of these biomarkers was measured in unseen test cases using repeated nested cross-validation.
The classification accuracies in the HC vs FE, HC vs ARMS-T, and ARMS-T vs FE analyses were 86.7%, 80.7%, and 80.0%, respectively. The neuroanatomical decision functions underlying these discriminative results particularly involved the frontotemporal, cingulate, cerebellar, and subcortical brain structures.
Our findings suggest that structural brain alterations accumulate at the onset of psychosis and occur even before transition to psychosis allowing for the single-subject differentiation of the prodromal and first-episode stages of the disease. Pattern regression techniques facilitate an accurate prediction of these structural brain dynamics at the early stage of psychosis, potentially allowing for the early recognition of individuals at risk of developing psychosis.
精神病高危状态(ARMS)和精神病首次发作与大脑结构异常有关,这些异常可能有助于对精神病进行个体化的早期识别。然而,目前尚不清楚这些大脑改变是在高危个体的临床恶化之前发展的,还是与个体向精神病的转变同时发生的。
我们评估了一种基于磁共振成像(MRI)的分类系统在分类有后续精神病发作风险的个体(ARMS-T)和首次发作精神病患者(FE)的疾病阶段的表现。使用 22 名健康对照(HC)、16 名 ARMS-T 和 23 名 FE 受试者的结构 MRI 数据构建了两两和多组生物标志物。这些生物标志物在未见测试病例中的性能通过重复嵌套交叉验证进行测量。
在 HC 与 FE、HC 与 ARMS-T 和 ARMS-T 与 FE 分析中的分类准确率分别为 86.7%、80.7%和 80.0%。这些判别结果的神经解剖决策函数特别涉及额颞叶、扣带回、小脑和皮质下脑结构。
我们的发现表明,大脑结构改变在精神病发作时开始积累,甚至在向精神病转变之前就已经发生,从而允许对疾病的前驱期和首次发作期进行个体区分。模式回归技术有助于在精神病的早期阶段准确预测这些结构大脑动力学,可能允许早期识别有发展为精神病风险的个体。