Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, E-08193 Cerdanyola del Vallès, Spain.
Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), C/José Gutiérrez Abascal 2, E-28006 Madrid, Spain.
Ann Anat. 2018 Jan;215:8-19. doi: 10.1016/j.aanat.2017.09.001. Epub 2017 Sep 18.
The coordinated activity of bone cells (i.e., osteoblasts and osteoclasts) during ontogeny underlies observed changes in bone growth rates (recorded in bone histology and bone microstructure) and bone remodeling patterns explaining the ontogenetic variation in bone size and shape. Histological cross-sections of the mandible in the C57BL/6J inbred mouse strain were recently examined in order to analyze the bone microstructure, as well as the directions and rates of bone growth according to the patterns of fluorescent labeling, with the aim of description of the early postnatal histomorphogenesis of this skeletal structure. Here we use the same approach to characterize the histomorphogenesis of the mandible in wild specimens of Mus musculus domesticus, from the second to the eighth week of postnatal life, for the first time. In addition, we assess the degree of similarity in this biological process between the wild specimens examined and the C57BL/6J laboratory strain. Bone microstructure data show that M. musculus domesticus and the C57BL/6J strain differ in the temporospatial pattern of histological maturation of the mandible, which particularly precludes the support of mandibular organization into the alveolar region and the ascending ramus modules at the histological level in M. musculus domesticus. The patterns of fluorescent labeling reveal that the mandible of the wild mice exhibits temporospatial differences in the remodeling pattern, as well as higher growth rates particularly after weaning, compared to the laboratory mice. Since the two mouse groups were reared under the same conditions, the dissimilarities found suggest the existence of differences between the groups in the genetic regulation of bone remodeling, probably as a result of their different genetic backgrounds. Despite the usual suitability of inbred mouse strains as model organisms, inferences from them to natural populations regarding bone growth should be made with caution.
成骨细胞(即成骨细胞和破骨细胞)在个体发生过程中的协调活动是观察到的骨生长速率变化的基础(记录在骨组织学和骨微观结构中),也是骨重塑模式的基础,这些模式解释了骨大小和形状的个体发生变化。最近检查了 C57BL/6J 近交系小鼠下颌骨的组织学横断面,以分析骨微观结构,以及根据荧光标记模式的骨生长方向和速率,目的是描述这种骨骼结构的早期产后组织发生。在这里,我们首次使用相同的方法来描述野生型 Mus musculus domesticus 下颌骨的组织发生,从出生后的第二周到第八周。此外,我们评估了在这一生物学过程中,被检查的野生标本与 C57BL/6J 实验室品系之间的相似程度。骨微观结构数据表明,M. musculus domesticus 和 C57BL/6J 品系在下颌骨组织成熟的时空模式上存在差异,这特别排除了在下颌骨组织水平上将下颌骨组织成牙槽区和上升支模块的可能性。荧光标记模式表明,与实验室小鼠相比,野生小鼠的下颌骨在重塑模式上表现出时空差异,并且在断奶后生长速度更高。由于两组小鼠都是在相同的条件下饲养的,因此发现的差异表明,在骨重塑的遗传调控方面,两组之间存在差异,这可能是由于它们的不同遗传背景。尽管近交系小鼠通常适合作为模型生物,但从它们推断到自然种群的关于骨生长的结论应该谨慎做出。