Suppr超能文献

逐步进化提高了对与蛋白质靶标结合的不同肽的鉴定。

Stepwise Evolution Improves Identification of Diverse Peptides Binding to a Protein Target.

机构信息

Roche Madison, 500 S Rosa Rd, Madison, WI, 53719, USA.

Roche Pharmaceutical Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, Grenzacherstrasse, 4070, Basel, Switzerland.

出版信息

Sci Rep. 2017 Sep 21;7(1):12116. doi: 10.1038/s41598-017-12440-1.

Abstract

Considerable efforts have been made to develop technologies for selection of peptidic molecules that act as substrates or binders to a protein of interest. Here we demonstrate the combination of rational peptide array library design, parallel screening and stepwise evolution, to discover novel peptide hotspots. These hotspots can be systematically evolved to create high-affinity, high-specificity binding peptides to a protein target in a reproducible and digitally controlled process. The method can be applied to synthesize both linear and cyclic peptides, as well as peptides composed of natural and non-natural amino acid analogs, thereby enabling screens in a much diverse chemical space. We apply this method to stepwise evolve peptide binders to streptavidin, a protein studied for over two decades and report novel peptides that mimic key interactions of biotin to streptavidin.

摘要

人们已经做出了相当大的努力来开发技术,以选择作为感兴趣的蛋白质的底物或配体的肽分子。在这里,我们展示了合理的肽阵列文库设计、平行筛选和逐步进化的结合,以发现新的肽热点。这些热点可以通过系统进化来创建高亲和力、高特异性的结合肽,以在可重复和数字控制的过程中针对蛋白质靶标。该方法可用于合成线性和环状肽,以及由天然和非天然氨基酸类似物组成的肽,从而能够在更广泛的化学空间中进行筛选。我们将该方法应用于逐步进化到链霉亲和素的肽结合物,链霉亲和素是一种被研究了二十多年的蛋白质,并报告了模拟生物素与链霉亲和素关键相互作用的新型肽。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50e9/5608804/6c6c860ba456/41598_2017_12440_Fig1_HTML.jpg

相似文献

1
Stepwise Evolution Improves Identification of Diverse Peptides Binding to a Protein Target.
Sci Rep. 2017 Sep 21;7(1):12116. doi: 10.1038/s41598-017-12440-1.
2
Highly selective cyclic peptide ligands for NeutrAvidin and avidin identified by phage display.
Chem Biol Drug Des. 2006 Jul;68(1):3-10. doi: 10.1111/j.1747-0285.2006.00401.x.
3
Tight-binding streptavidin ligands from a cyclic peptide library.
Bioorg Med Chem Lett. 1998 Sep 8;8(17):2327-32. doi: 10.1016/s0960-894x(98)00421-1.
4
Proximity-driven site-specific cyclization of phage-displayed peptides.
Nat Commun. 2024 Aug 24;15(1):7308. doi: 10.1038/s41467-024-51610-4.
5
Engineering an affinity tag for genetically encoded cyclic peptides.
Biotechnol Bioeng. 2005 Dec 30;92(7):820-30. doi: 10.1002/bit.20644.
6
Structure-Based Design of Non-natural Macrocyclic Peptides That Inhibit Protein-Protein Interactions.
J Med Chem. 2017 Nov 9;60(21):8982-8988. doi: 10.1021/acs.jmedchem.7b01221. Epub 2017 Oct 27.

引用本文的文献

1
Ranking antibody binding epitopes and proteins across samples from whole proteome tiled linear peptides.
Bioinformatics. 2024 Nov 28;40(12). doi: 10.1093/bioinformatics/btae637.
2
Accurate de novo design of heterochiral protein-protein interactions.
Cell Res. 2024 Dec;34(12):846-858. doi: 10.1038/s41422-024-01014-2. Epub 2024 Aug 14.
3
DexDesign: an OSPREY-based algorithm for designing de novo D-peptide inhibitors.
Protein Eng Des Sel. 2024 Jan 29;37. doi: 10.1093/protein/gzae007.
4
Antibody landscape of C57BL/6 mice cured of B78 melanoma via a combined radiation and immunocytokine immunotherapy regimen.
Front Immunol. 2023 Nov 23;14:1221155. doi: 10.3389/fimmu.2023.1221155. eCollection 2023.
5
Ranking Antibody Binding Epitopes and Proteins Across Samples from Whole Proteome Tiled Linear Peptides.
bioRxiv. 2023 Apr 25:2023.04.23.536620. doi: 10.1101/2023.04.23.536620.
6
Production of high-complexity frameshift neoantigen peptide microarrays.
RSC Adv. 2020 Aug 11;10(50):29675-29681. doi: 10.1039/d0ra05267a. eCollection 2020 Aug 10.
7
Immunoreactive peptide maps of SARS-CoV-2.
Commun Biol. 2021 Feb 12;4(1):225. doi: 10.1038/s42003-021-01743-9.
8
High-throughput determination of protein affinities using unmodified peptide libraries in nanomolar scale.
iScience. 2020 Dec 7;24(1):101898. doi: 10.1016/j.isci.2020.101898. eCollection 2021 Jan 22.
10
Peptide Folding and Binding Probed by Systematic Non-canonical Mutagenesis.
Front Mol Biosci. 2020 Jun 24;7:100. doi: 10.3389/fmolb.2020.00100. eCollection 2020.

本文引用的文献

1
2
Methods for the directed evolution of proteins.
Nat Rev Genet. 2015 Jul;16(7):379-94. doi: 10.1038/nrg3927. Epub 2015 Jun 9.
3
Peptide therapeutics: current status and future directions.
Drug Discov Today. 2015 Jan;20(1):122-8. doi: 10.1016/j.drudis.2014.10.003. Epub 2014 Oct 17.
4
Proteome-wide epitope mapping of antibodies using ultra-dense peptide arrays.
Mol Cell Proteomics. 2014 Jun;13(6):1585-97. doi: 10.1074/mcp.M113.033308. Epub 2014 Apr 4.
5
Tracing primordial protein evolution through structurally guided stepwise segment elongation.
J Biol Chem. 2014 Feb 7;289(6):3394-404. doi: 10.1074/jbc.M113.530592. Epub 2013 Dec 19.
6
Structural basis for the drug extrusion mechanism by a MATE multidrug transporter.
Nature. 2013 Apr 11;496(7444):247-51. doi: 10.1038/nature12014. Epub 2013 Mar 27.
7
Standardizing and simplifying analysis of peptide library data.
J Chem Inf Model. 2013 Feb 25;53(2):493-9. doi: 10.1021/ci300484q. Epub 2013 Feb 4.
8
Flexizymes for genetic code reprogramming.
Nat Protoc. 2011 Jun;6(6):779-90. doi: 10.1038/nprot.2011.331. Epub 2011 May 12.
9
Overview of the CCP4 suite and current developments.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.
10
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验