From the Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan.
J Biol Chem. 2014 Feb 7;289(6):3394-404. doi: 10.1074/jbc.M113.530592. Epub 2013 Dec 19.
The understanding of how primordial proteins emerged has been a fundamental and longstanding issue in biology and biochemistry. For a better understanding of primordial protein evolution, we synthesized an artificial protein on the basis of an evolutionary hypothesis, segment-based elongation starting from an autonomously foldable short peptide. A 10-residue protein, chignolin, the smallest foldable polypeptide ever reported, was used as a structural support to facilitate higher structural organization and gain-of-function in the development of an artificial protein. Repetitive cycles of segment elongation and subsequent phage display selection successfully produced a 25-residue protein, termed AF.2A1, with nanomolar affinity against the Fc region of immunoglobulin G. AF.2A1 shows exquisite molecular recognition ability such that it can distinguish conformational differences of the same molecule. The structure determined by NMR measurements demonstrated that AF.2A1 forms a globular protein-like conformation with the chignolin-derived β-hairpin and a tryptophan-mediated hydrophobic core. Using sequence analysis and a mutation study, we discovered that the structural organization and gain-of-function emerged from the vicinity of the chignolin segment, revealing that the structural support served as the core in both structural and functional development. Here, we propose an evolutionary model for primordial proteins in which a foldable segment serves as the evolving core to facilitate structural and functional evolution. This study provides insights into primordial protein evolution and also presents a novel methodology for designing small sized proteins useful for industrial and pharmaceutical applications.
原始蛋白的起源一直是生物学和生物化学领域的一个基本和长期存在的问题。为了更好地理解原始蛋白的进化,我们根据进化假说,从自主折叠的短肽出发,通过分段延伸的方法合成了一种人工蛋白。使用最小折叠多肽 chignolin 作为结构支架,以促进更高的结构组织和获得功能,从而开发出一种人工蛋白。通过重复的分段延伸和随后的噬菌体展示选择,成功地产生了一种 25 个残基的蛋白质,称为 AF.2A1,它对免疫球蛋白 G 的 Fc 区域具有纳摩尔亲和力。AF.2A1 表现出出色的分子识别能力,能够区分同一分子的构象差异。通过 NMR 测量确定的结构表明,AF.2A1 形成了一个类似球状蛋白的构象,其中包含来自 chignolin 的 β-发夹和色氨酸介导的疏水性核心。通过序列分析和突变研究,我们发现结构组织和获得功能源于 chignolin 片段附近,这表明结构支架在结构和功能发展中充当核心。在这里,我们提出了一种原始蛋白的进化模型,其中可折叠片段作为进化核心,促进结构和功能进化。这项研究为原始蛋白的进化提供了新的见解,同时也为设计用于工业和制药应用的小型蛋白质提供了一种新的方法。