Suppr超能文献

二维多孔夹层状 C/Si-石墨烯-Si/C 纳米片用于优异的锂存储。

Two-Dimensional Porous Sandwich-Like C/Si-Graphene-Si/C Nanosheets for Superior Lithium Storage.

机构信息

State Key Laboratory of Chemical Engineering, Key Laboratory for Specially Functional Polymers and Related Technology of Ministry of Education, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology , Shanghai 200237, China.

CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001, China.

出版信息

ACS Appl Mater Interfaces. 2017 Nov 15;9(45):39371-39379. doi: 10.1021/acsami.7b11721. Epub 2017 Nov 3.

Abstract

A novel two-dimensional porous sandwich-like Si/carbon nanosheet is designed and successfully fabricated as an anode for superior lithium storage, where a porous Si nanofilm grows on the two sides of reduced graphene oxide (rGO) and is then coated with a carbon layer (denoted as C/Si-rGO-Si/C). The coexistence of micropores and mesopores in C/Si-rGO-Si/C nanosheets offers a rapid Li diffusion rate, and the porous Si provides a short pathway for electric transportation. Meanwhile, the coated carbon layer not only can promote to form a stable SEI layer, but also can improve the electric conductivity of nanoscale Si coupled with rGO. Thus, the unique nanostructures offer the resultant C/Si-rGO-Si/C electrode with high reversible capacity (1187 mA h g after 200 cycles at 0.2 A g), excellent cycle stability (894 mA h g after 1000 cycles at 1 A g), and high rate capability (694 mA h g at 5 A g, 447 mA h g at 10 A g).

摘要

一种新型二维多孔夹层状硅/碳纳米片被设计并成功制备为一种用于优异锂存储的阳极,其中多孔硅纳米膜生长在还原氧化石墨烯(rGO)的两侧,然后涂覆有碳层(表示为 C/Si-rGO-Si/C)。C/Si-rGO-Si/C 纳米片中的微孔和介孔共存提供了快速的 Li 扩散速率,多孔硅提供了用于电传输的短路径。同时,涂覆的碳层不仅可以促进形成稳定的 SEI 层,而且可以与 rGO 结合提高纳米级硅的电导率。因此,独特的纳米结构使所得的 C/Si-rGO-Si/C 电极具有高可逆容量(在 0.2 A g 下 200 次循环后为 1187 mA h g)、优异的循环稳定性(在 1 A g 下 1000 次循环后为 894 mA h g)和高倍率性能(在 5 A g 下为 694 mA h g,在 10 A g 下为 447 mA h g)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验