Suppr超能文献

观点:差分动态显微镜提取复杂流体和生物系统中的多尺度活性。

Perspective: Differential dynamic microscopy extracts multi-scale activity in complex fluids and biological systems.

机构信息

Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate 20090, Italy.

Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

出版信息

J Chem Phys. 2017 Sep 21;147(11):110901. doi: 10.1063/1.5001027.

Abstract

Differential dynamic microscopy (DDM) is a technique that exploits optical microscopy to obtain local, multi-scale quantitative information about dynamic samples, in most cases without user intervention. It is proving extremely useful in understanding dynamics in liquid suspensions, soft materials, cells, and tissues. In DDM, image sequences are analyzed via a combination of image differences and spatial Fourier transforms to obtain information equivalent to that obtained by means of light scattering techniques. Compared to light scattering, DDM offers obvious advantages, principally (a) simplicity of the setup; (b) possibility of removing static contributions along the optical path; (c) power of simultaneous different microscopy contrast mechanisms; and (d) flexibility of choosing an analysis region, analogous to a scattering volume. For many questions, DDM has also advantages compared to segmentation/tracking approaches and to correlation techniques like particle image velocimetry. The very straightforward DDM approach, originally demonstrated with bright field microscopy of aqueous colloids, has lately been used to probe a variety of other complex fluids and biological systems with many different imaging methods, including dark-field, differential interference contrast, wide-field, light-sheet, and confocal microscopy. The number of adopting groups is rapidly increasing and so are the applications. Here, we briefly recall the working principles of DDM, we highlight its advantages and limitations, we outline recent experimental breakthroughs, and we provide a perspective on future challenges and directions. DDM can become a standard primary tool in every laboratory equipped with a microscope, at the very least as a first bias-free automated evaluation of the dynamics in a system.

摘要

微分动态显微镜(DDM)是一种利用光学显微镜获取动态样品局部、多尺度定量信息的技术,在大多数情况下无需用户干预。它在理解液体悬浮液、软物质、细胞和组织中的动力学方面非常有用。在 DDM 中,通过图像差异和空间傅里叶变换的组合来分析图像序列,以获得与光散射技术获得的等效信息。与光散射相比,DDM 具有明显的优势,主要包括:(a)设置简单;(b)沿光路去除静态贡献的可能性;(c)同时使用不同显微镜对比度机制的能力;(d)选择分析区域的灵活性,类似于散射体积。对于许多问题,DDM 与分割/跟踪方法以及相关技术(如粒子图像测速法)相比也具有优势。最初使用水相胶体的明场显微镜演示的非常简单的 DDM 方法,最近已用于通过多种不同的成像方法探测各种其他复杂流体和生物系统,包括暗场、微分干涉对比、宽场、光片和共聚焦显微镜。采用该方法的研究小组数量正在迅速增加,应用也在不断增加。在这里,我们简要回顾 DDM 的工作原理,强调其优势和局限性,概述最近的实验突破,并对未来的挑战和方向进行展望。DDM 可以成为每个配备显微镜的实验室的标准基本工具,至少可以作为系统动力学的第一个无偏差自动评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验