Sheung Janet Y, Garamella Jonathan, Kahl Stella K, Lee Brian Y, McGorty Ryan J, Robertson-Anderson Rae M
W. M. Keck Science Department, Scripps College, Claremont, CA, United States.
W. M. Keck Science Department, Pitzer College, Claremont, CA, United States.
Front Phys. 2022;10. doi: 10.3389/fphy.2022.1055441. Epub 2022 Nov 18.
The cytoskeleton-a composite network of biopolymers, molecular motors, and associated binding proteins-is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties-ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems-remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content increases the range of timescales over which transport is superdiffusive, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles in active composites exhibit superdiffusive dynamics with scaling exponents that are robust to changing actomyosin fractions, in contrast to normal, yet faster, diffusion in networks without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.
细胞骨架——一种由生物聚合物、分子马达和相关结合蛋白组成的复合网络——是活性物质的一个典型例子。粒子通过细胞骨架的运输范围可以从异常的、非均匀的亚扩散到超扩散和平流。然而,重现和理解这些在细胞骨架和其他非平衡软物质系统中普遍存在的特性仍然具有挑战性。在这里,我们将光片显微镜与差分动态显微镜和单粒子追踪相结合,以阐明肌动球蛋白 - 微管复合物中的异常和平流运输。我们表明,粒子表现出多模式运输,在可调的交叉时间尺度上从明显的亚扩散转变为超扩散。令人惊讶的是,虽然较高的肌动球蛋白含量增加了运输为超扩散的时间尺度范围,但它也显著增加了短时间尺度下的亚扩散程度,并总体上减缓了运输。相应的位移分布显示出非高斯性、不对称性和非零模式的独特组合,表明定向平流与笼形扩散和跳跃相结合。在更大的时空尺度上,活性复合物中的粒子表现出超扩散动力学,其标度指数对肌动球蛋白分数的变化具有鲁棒性,这与没有肌动球蛋白的网络中正常但更快的扩散形成对比。我们的具体结果为活性细胞骨架系统中非平衡过程、拥挤和异质性之间的相互作用提供了重要的新见解。更一般地说,我们的方法广泛适用于活性物质系统,以阐明跨尺度的运输和动力学。