自发性脑活动和 EEG 微观状态。一种新的 EEG/fMRI 分析方法,用于探索静息态网络。

Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks.

机构信息

Department of Psychiatry, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany.

出版信息

Neuroimage. 2010 Oct 1;52(4):1149-61. doi: 10.1016/j.neuroimage.2010.01.093. Epub 2010 Feb 6.

Abstract

The brain is active even in the absence of explicit input or output as demonstrated from electrophysiological as well as imaging studies. Using a combined approach we measured spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal along with electroencephalography (EEG) in eleven healthy subjects during relaxed wakefulness (eyes closed). In contrast to other studies which used the EEG frequency information to guide the functional MRI (fMRI) analysis, we opted for transient EEG events, which identify and quantify brain electric microstates as time epochs with quasi-stable field topography. We then used this microstate information as regressors for the BOLD fluctuations. Single trial EEGs were segmented with a specific module of the LORETA (low resolution electromagnetic tomography) software package in which microstates are represented as normalized vectors constituted by scalp electric potentials, i.e., the related 3-dimensional distribution of cortical current density in the brain. Using the occurrence and the duration of each microstate, we modeled the hemodynamic response function (HRF) which revealed BOLD activation in all subjects. The BOLD activation patterns resembled well known resting-state networks (RSNs) such as the default mode network. Furthermore we "cross validated" the data performing a BOLD independent component analysis (ICA) and computing the correlation between each ICs and the EEG microstates across all subjects. This study shows for the first time that the information contained within EEG microstates on a millisecond timescale is able to elicit BOLD activation patterns consistent with well known RSNs, opening new avenues for multimodal imaging data processing.

摘要

大脑在没有明确输入或输出的情况下也保持活跃,这一点已被电生理学和影像学研究证实。我们采用联合方法,在 11 位健康受试者处于放松清醒状态(闭眼)时,测量了血氧水平依赖(BOLD)信号与脑电图(EEG)的自发波动。与其他使用 EEG 频率信息来指导功能磁共振成像(fMRI)分析的研究不同,我们选择了瞬态 EEG 事件,这些事件可以识别和量化脑电微状态,作为具有准稳定场拓扑的时间区间。然后,我们将这种微状态信息用作 BOLD 波动的回归量。单次试验 EEG 使用 LORETA(低分辨率电磁层析成像)软件包的特定模块进行分段,其中微状态表示为头皮电位构成的归一化向量,即大脑中皮质电流密度的相关 3 维分布。使用每个微状态的出现和持续时间,我们对血流动力学响应函数(HRF)进行建模,该模型揭示了所有受试者的 BOLD 激活。BOLD 激活模式与众所周知的静息态网络(RSNs)非常相似,如默认模式网络。此外,我们通过执行 BOLD 独立成分分析(ICA)并计算所有受试者的每个 IC 与 EEG 微状态之间的相关性来“交叉验证”数据。这项研究首次表明,EEG 微状态在毫秒时间尺度上包含的信息能够引发与众所周知的 RSN 一致的 BOLD 激活模式,为多模态成像数据处理开辟了新的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索