Wu Huiyong, Yang Tongtong, Li Hongkun, Zhou Ziwei
College of Science, Shenyang University of Chemical Technology, Shenyang, Liaoning, China.
Sci Rep. 2023 Aug 7;13(1):12825. doi: 10.1038/s41598-023-39838-4.
Severe air pollution poses a significant threat to public safety and human health. Predicting future air quality conditions is crucial for implementing pollution control measures and guiding residents' activity choices. However, traditional single-module machine learning models suffer from long training times and low prediction accuracy. To improve the accuracy of air quality forecasting, this paper proposes a ISSA-LSTM model-based approach for predicting the air quality index (AQI). The model consists of three main components: random forest (RF) and mRMR, improved sparrow search algorithm (ISSA), and long short-term memory network (LSTM). Firstly, RF-mRMR is used to select the influential variables affecting AQI, thereby enhancing the model's performance. Next, ISSA algorithm is employed to optimize the hyperparameters of LSTM, further improving the model's performance. Finally, LSTM model is utilized to predict AQI concentrations. Through comparative experiments, it is demonstrated that the ISSA-LSTM model outperforms other models in terms of RMSE and R, exhibiting higher prediction accuracy. The model's predictive performance is validated across different time steps, demonstrating minimal prediction errors. Therefore, the ISSA-LSTM model is a viable and effective approach for accurately predicting AQI.
严重的空气污染对公共安全和人类健康构成重大威胁。预测未来空气质量状况对于实施污染控制措施和指导居民的活动选择至关重要。然而,传统的单模块机器学习模型存在训练时间长和预测准确率低的问题。为了提高空气质量预测的准确性,本文提出了一种基于ISSA-LSTM模型的空气质量指数(AQI)预测方法。该模型由三个主要部分组成:随机森林(RF)和mRMR、改进的麻雀搜索算法(ISSA)以及长短期记忆网络(LSTM)。首先,使用RF-mRMR来选择影响AQI的有影响力变量,从而提高模型性能。其次,采用ISSA算法优化LSTM的超参数,进一步提升模型性能。最后,利用LSTM模型预测AQI浓度。通过对比实验表明,ISSA-LSTM模型在均方根误差(RMSE)和相关系数(R)方面优于其他模型,具有更高的预测准确率。该模型在不同时间步长上的预测性能得到验证,预测误差极小。因此,ISSA-LSTM模型是准确预测AQI的一种可行且有效的方法。