Suppr超能文献

高密度培养陆生念珠藻菌株导致次生代谢组重编程。

High-Density Cultivation of Terrestrial Nostoc Strains Leads to Reprogramming of Secondary Metabolome.

机构信息

University of Potsdam, Institute for Biochemistry and Biology, Potsdam-Golm, Germany.

Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.

出版信息

Appl Environ Microbiol. 2017 Nov 16;83(23). doi: 10.1128/AEM.01510-17. Print 2017 Dec 1.

Abstract

Terrestrial symbiotic cyanobacteria of the genus exhibit a large potential for the production of bioactive natural products of the nonribosomal peptide, polyketide, and ribosomal peptide classes, and yet most of the biosynthetic gene clusters are silent under conventional cultivation conditions. In the present study, we utilized a high-density cultivation approach recently developed for phototrophic bacteria to rapidly generate biomass of the filamentous bacteria up to a density of 400 g (wet weight)/liter. Unexpectedly, integrated transcriptional and metabolomics studies uncovered a major reprogramming of the secondary metabolome of two strains at high culture density and a governing effect of extracellular signals in this process. The holistic approach enabled capturing and structural elucidation of novel variants of anabaenopeptin, including one congener with potent allelopathic activity against a strain isolated from the same habitat. The study provides a snapshot on the role of cell-type-specific expression for the formation of natural products in cyanobacteria. Terrestrial filamentous cyanobacteria are a largely untapped source of small-molecule natural products. Exploitation of the phototrophic organisms is hampered by their slow growth and the requirement of photobioreactors. The present study not only demonstrates the suitability of a recently developed two-tier vessel cultivation approach for the rapid generation of biomass of strains but also demonstrates a pronounced upregulation of high value natural products at ultrahigh culture densities. The study provides new guidelines for high-throughput screening and exploitation of small-molecule natural products and can facilitate the discovery new bioactive products from terrestrial cyanobacteria.

摘要

陆生共生蓝细菌属表现出产生非核糖体肽、聚酮和核糖体肽类生物活性天然产物的巨大潜力,但大多数生物合成基因簇在常规培养条件下是沉默的。在本研究中,我们利用了最近为光养细菌开发的高密度培养方法,可快速将丝状细菌的生物量增加到 400 g(湿重)/升。出乎意料的是,综合转录组学和代谢组学研究揭示了两种蓝细菌菌株在高密度培养时次生代谢产物的主要重编程,以及细胞外信号在这一过程中的调控作用。这种整体方法能够捕获和阐明 anabaenopeptin 的新型变体,包括一种对同一栖息地分离株具有强烈化感活性的同系物。该研究提供了一个关于细胞类型特异性表达在蓝细菌天然产物形成中的作用的快照。陆生丝状蓝细菌是小分子天然产物的一个未被充分开发的来源。对光养生物的利用受到其生长缓慢和需要光生物反应器的限制。本研究不仅证明了最近开发的双层容器培养方法非常适合快速生成菌株的生物量,而且还证明了在超高培养密度下,高价值天然产物的显著上调。该研究为高通量筛选和利用小分子天然产物提供了新的指导方针,并有助于从陆生蓝细菌中发现新的生物活性产物。

相似文献

1
High-Density Cultivation of Terrestrial Nostoc Strains Leads to Reprogramming of Secondary Metabolome.
Appl Environ Microbiol. 2017 Nov 16;83(23). doi: 10.1128/AEM.01510-17. Print 2017 Dec 1.
2
The Swinholide Biosynthesis Gene Cluster from a Terrestrial Cyanobacterium, Nostoc sp. Strain UHCC 0450.
Appl Environ Microbiol. 2018 Jan 17;84(3). doi: 10.1128/AEM.02321-17. Print 2018 Feb 1.
3
Unlocking the Spatial Control of Secondary Metabolism Uncovers Hidden Natural Product Diversity in Nostoc punctiforme.
ACS Chem Biol. 2019 Jun 21;14(6):1271-1279. doi: 10.1021/acschembio.9b00240. Epub 2019 May 24.
4
The exo-proteome and exo-metabolome of Nostoc punctiforme (Cyanobacteria) in the presence and absence of nitrate.
Arch Microbiol. 2014 May;196(5):357-67. doi: 10.1007/s00203-014-0974-2. Epub 2014 Mar 19.
5
Bioactive Peptides Produced by Cyanobacteria of the Genus : A Review.
Mar Drugs. 2019 Sep 29;17(10):561. doi: 10.3390/md17100561.
6
Simultaneous Production of Anabaenopeptins and Namalides by the Cyanobacterium Nostoc sp. CENA543.
ACS Chem Biol. 2017 Nov 17;12(11):2746-2755. doi: 10.1021/acschembio.7b00570. Epub 2017 Sep 29.
7
Evidence for a mutualistic relationship between the cyanobacteria Nostoc and fungi Aspergilli in different environments.
Appl Microbiol Biotechnol. 2020 Jul;104(14):6413-6426. doi: 10.1007/s00253-020-10663-3. Epub 2020 May 29.
8
Deciphering Chemical Mediators Regulating Specialized Metabolism in a Symbiotic Cyanobacterium.
Angew Chem Int Ed Engl. 2022 Jun 27;61(26):e202204545. doi: 10.1002/anie.202204545. Epub 2022 May 9.

引用本文的文献

2
The Sustainable Production of Terpenoids in Cyanobacterial Chassis.
Microorganisms. 2025 Jun 10;13(6):1342. doi: 10.3390/microorganisms13061342.
4
Menominin A and B: Cytotoxic Cyclodepsipeptides from the Freshwater Sponge-Associated Cyanobacterium sp. UIC 10607.
J Nat Prod. 2025 Mar 28;88(3):732-746. doi: 10.1021/acs.jnatprod.4c01445. Epub 2025 Feb 20.
5
Chemical diversity of cyanobacterial natural products.
Nat Prod Rep. 2025 Jan 22;42(1):6-49. doi: 10.1039/d4np00040d.
6
Desiccated Cyanobacteria Serve As Efficient Plasmid DNA Carriers in Space Flight.
ACS Synth Biol. 2024 Sep 20;13(9):2733-2741. doi: 10.1021/acssynbio.3c00672. Epub 2024 Aug 16.
7
Engineering cyanobacteria as a new platform for producing taxol precursors directly from carbon dioxide.
Biotechnol Biofuels Bioprod. 2024 Jul 16;17(1):99. doi: 10.1186/s13068-024-02555-9.
10
Photobioreactors for cultivation and synthesis: Specifications, challenges, and perspectives.
Eng Life Sci. 2021 Oct 27;22(12):712-724. doi: 10.1002/elsc.202100070. eCollection 2022 Dec.

本文引用的文献

1
antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification.
Nucleic Acids Res. 2017 Jul 3;45(W1):W36-W41. doi: 10.1093/nar/gkx319.
2
A Genetic and Chemical Perspective on Symbiotic Recruitment of Cyanobacteria of the Genus into the Host Plant L.
Front Microbiol. 2016 Nov 1;7:1693. doi: 10.3389/fmicb.2016.01693. eCollection 2016.
3
Unique marine derived cyanobacterial biosynthetic genes for chemical diversity.
Nat Prod Rep. 2016 Feb;33(2):348-64. doi: 10.1039/c5np00097a.
4
Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria.
Trends Microbiol. 2015 Oct;23(10):642-652. doi: 10.1016/j.tim.2015.07.008.
5
Anti-infective Natural Products from Cyanobacteria.
Planta Med. 2015 Oct;81(15):1309-25. doi: 10.1055/s-0035-1546055. Epub 2015 Jun 17.
7
Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme.
Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1862-7. doi: 10.1073/pnas.1419543112. Epub 2015 Jan 26.
8
Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria.
BMC Genomics. 2014 Nov 18;15(1):977. doi: 10.1186/1471-2164-15-977.
9
A polyketide interferes with cellular differentiation in the symbiotic cyanobacterium Nostoc punctiforme.
Environ Microbiol Rep. 2011 Oct;3(5):550-8. doi: 10.1111/j.1758-2229.2011.00258.x. Epub 2011 May 9.
10
Switching toxin production on and off: intermittent microcystin synthesis in a Microcystis bloom.
Environ Microbiol Rep. 2011 Feb;3(1):118-24. doi: 10.1111/j.1758-2229.2010.00196.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验