Suppr超能文献

放射组学分析评估局部晚期直肠癌新辅助放化疗的病理完全缓解。

Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer.

机构信息

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China.

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital and Institute, Beijing, China.

出版信息

Clin Cancer Res. 2017 Dec 1;23(23):7253-7262. doi: 10.1158/1078-0432.CCR-17-1038. Epub 2017 Sep 22.

Abstract

To develop and validate a radiomics model for evaluating pathologic complete response (pCR) to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer (LARC). We enrolled 222 patients (152 in the primary cohort and 70 in the validation cohort) with clinicopathologically confirmed LARC who received chemoradiotherapy before surgery. All patients underwent T2-weighted and diffusion-weighted imaging before and after chemoradiotherapy; 2,252 radiomic features were extracted from each patient before and after treatment imaging. The two-sample test and the least absolute shrinkage and selection operator regression were used for feature selection, whereupon a radiomics signature was built with support vector machines. Multivariable logistic regression analysis was then used to develop a radiomics model incorporating the radiomics signature and independent clinicopathologic risk factors. The performance of the radiomics model was assessed by its calibration, discrimination, and clinical usefulness with independent validation. The radiomics signature comprised 30 selected features and showed good discrimination performance in both the primary and validation cohorts. The individualized radiomics model, which incorporated the radiomics signature and tumor length, also showed good discrimination, with an area under the receiver operating characteristic curve of 0.9756 (95% confidence interval, 0.9185-0.9711) in the validation cohort, and good calibration. Decision curve analysis confirmed the clinical utility of the radiomics model. Using pre- and posttreatment MRI data, we developed a radiomics model with excellent performance for individualized, noninvasive prediction of pCR. This model may be used to identify LARC patients who can omit surgery after chemoradiotherapy. .

摘要

为了开发和验证一种用于评估局部晚期直肠癌(LARC)患者新辅助放化疗病理完全缓解(pCR)的放射组学模型。我们纳入了 222 名经临床病理证实的 LARC 患者(主要队列 152 例,验证队列 70 例),这些患者在手术前接受了放化疗。所有患者在放化疗前后均行 T2 加权和弥散加权成像;在治疗前后的成像中,从每位患者中提取了 2252 个放射组学特征。采用两样本 t 检验和最小绝对收缩和选择算子回归进行特征选择,然后使用支持向量机构建放射组学特征。然后,多变量逻辑回归分析用于开发包含放射组学特征和独立临床病理危险因素的放射组学模型。通过独立验证评估放射组学模型的校准、判别和临床实用性。放射组学特征由 30 个选定的特征组成,在主要队列和验证队列中均显示出良好的判别性能。个体化放射组学模型,其中包含放射组学特征和肿瘤长度,也显示出良好的判别能力,在验证队列中,接受者操作特征曲线下面积为 0.9756(95%置信区间,0.9185-0.9711),且具有良好的校准。决策曲线分析证实了放射组学模型的临床实用性。使用治疗前后的 MRI 数据,我们开发了一种放射组学模型,用于对 pCR 进行个体化、非侵入性预测,具有优异的性能。该模型可用于识别接受放化疗后可避免手术的 LARC 患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验