Suppr超能文献

多模态放射组学模型预测局部晚期直肠癌新辅助化疗的治疗反应。

Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer.

机构信息

Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China.

Department of Gastrointestinal Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China.

出版信息

World J Gastroenterol. 2020 May 21;26(19):2388-2402. doi: 10.3748/wjg.v26.i19.2388.

Abstract

BACKGROUND

Neoadjuvant chemotherapy is currently recommended as preoperative treatment for locally advanced rectal cancer (LARC); however, evaluation of treatment response to neoadjuvant chemotherapy is still challenging.

AIM

To create a multi-modal radiomics model to assess therapeutic response after neoadjuvant chemotherapy for LARC.

METHODS

This retrospective study consecutively included 118 patients with LARC who underwent both computed tomography (CT) and magnetic resonance imaging (MRI) before neoadjuvant chemotherapy between October 2016 and June 2019. Histopathological findings were used as the reference standard for pathological response. Patients were randomly divided into a training set ( = 70) and a validation set ( = 48). The performance of different models based on CT and MRI, including apparent diffusion coefficient (ADC), dynamic contrast enhanced T1 images (DCE-T1), high resolution T2-weighted imaging (HR-T2WI), and imaging features, was assessed by using the receiver operating characteristic curve analysis. This was demonstrated as area under the curve (AUC) and accuracy (ACC). Calibration plots with Hosmer-Lemeshow tests were used to investigate the agreement and performance characteristics of the nomogram.

RESULTS

Eighty out of 118 patients (68%) achieved a pathological response. For an individual radiomics model, HR-T2WI performed better (AUC = 0.859, ACC = 0.896) than CT (AUC = 0.766, ACC = 0.792), DCE-T1 (AUC = 0.812, ACC = 0.854), and ADC (AUC = 0.828, ACC = 0.833) in the validation set. The imaging performance for extramural venous invasion detection was relatively low in both the training (AUC = 0.73, ACC = 0.714) and validation (AUC = 0.578, ACC = 0.583) sets. The multi-modal radiomics model reached an AUC of 0.925 and ACC of 0.886 in the training set, and an AUC of 0.93 and ACC of 0.875 in the validation set. For the clinical radiomics nomogram, good agreement was found between the nomogram prediction and actual observation.

CONCLUSION

A multi-modal nomogram using traditional imaging features and radiomics of preoperative CT and MRI adds accuracy to the prediction of treatment outcome, and thus contributes to the personalized selection of neoadjuvant chemotherapy for LARC.

摘要

背景

新辅助化疗目前被推荐为局部晚期直肠癌(LARC)的术前治疗方法;然而,评估新辅助化疗的治疗反应仍然具有挑战性。

目的

建立一种多模态放射组学模型,以评估 LARC 新辅助化疗后的治疗反应。

方法

本回顾性研究连续纳入了 2016 年 10 月至 2019 年 6 月期间接受新辅助化疗的 118 例 LARC 患者,这些患者均接受了计算机断层扫描(CT)和磁共振成像(MRI)检查。组织病理学发现被用作病理反应的参考标准。患者被随机分为训练集(n=70)和验证集(n=48)。通过受试者工作特征曲线分析评估基于 CT 和 MRI 的不同模型(包括表观扩散系数(ADC)、动态对比增强 T1 图像(DCE-T1)、高分辨率 T2 加权成像(HR-T2WI)和影像学特征)的性能,表现为曲线下面积(AUC)和准确性(ACC)。使用 Hosmer-Lemeshow 检验绘制校准图,以研究列线图的一致性和性能特征。

结果

118 例患者中有 80 例(68%)达到了病理反应。对于个体放射组学模型,HR-T2WI 的表现优于 CT(AUC=0.859,ACC=0.896)、DCE-T1(AUC=0.812,ACC=0.854)和 ADC(AUC=0.828,ACC=0.833),在验证集中。在训练集(AUC=0.73,ACC=0.714)和验证集(AUC=0.578,ACC=0.583)中,外膜静脉侵犯检测的影像学性能均相对较低。多模态放射组学模型在训练集中的 AUC 为 0.925,ACC 为 0.886,在验证集中的 AUC 为 0.93,ACC 为 0.875。对于临床放射组学列线图,列线图预测与实际观察之间存在良好的一致性。

结论

使用术前 CT 和 MRI 的传统影像学特征和放射组学建立的多模态列线图提高了治疗结果预测的准确性,有助于为 LARC 患者选择新辅助化疗方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验