文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多参数磁共振成像的影像组学方法在预测直肠癌患者新辅助放化疗(nCRT)疗效中的应用

Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer.

作者信息

Cheng Yuan, Luo Yahong, Hu Yue, Zhang Zhaohe, Wang Xingling, Yu Qing, Liu Guanyu, Cui Enuo, Yu Tao, Jiang Xiran

机构信息

Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, 110122, People's Republic of China.

Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China.

出版信息

Abdom Radiol (NY). 2021 Nov;46(11):5072-5085. doi: 10.1007/s00261-021-03219-0. Epub 2021 Jul 24.


DOI:10.1007/s00261-021-03219-0
PMID:34302510
Abstract

PURPOSE: To investigate the value of multiparametric MRI-based radiomics on predicting response to nCRT in patients with rectal cancer. METHODS: This study enrolled 193 patients with pathologically confirmed LARC who received nCRT treatment between Apr. 2014 and Jun. 2018. All patients underwent baseline T1-weighted (T1W), T2-weighted (T2W) and T2-weighted fat-suppression (T2FS) MRI scans before neoadjuvant chemoradiotherapy. Radiomics features were extracted and selected from the MRI data to establish the radiomics signature. Important clinical predictors were identified by Mann-Whitney U test and Chi-square test. The nomogram integrating the radiomics signature and important clinical predictors was constructed using multivariate logistic regression. Prediction capabilities of each model were assessed with receiver operating characteristic (ROC) curve analysis. Performance of the nomogram was evaluated by its calibration and potential clinical usefulness. RESULTS: For the prediction of good response (GR) and pathologic complete response (pCR), the developed radiomics signature comprising 10 and 7 features, respectively, were significantly associated with the therapeutic response to nCRT. The nomogram incorporating the radiomics signature and important clinical predictors (CEA and CA19-9 for predicting GR; CEA, posttreatment length and posttreatment thickness for predicting pCR) achieved favorable prediction efficacy, with AUCs of 0.918 (95% confidence interval [CI]: 0.867-0.971, Sen = 0.972, Spe = 0.828) and 0.944 (95% CI: 0.891-0.997, Sen = 0.943, Spe = 0.828) in the training and validation cohort for predicting GR, respectively; with AUCs of 0.959 (95% CI: 0.927-0.991, Sen = 1.000, Spe = 0.833) and 0.912 (95% CI: 0.843-0.982, Sen = 1.000, Spe = 0.815) in the training and validation cohort for predicting pCR, respectively. Decision curve analysis confirmed potential clinical usefulness of our nomogram. CONCLUSIONS: This study demonstrated that the MRI-based radiomics nomogram is predictive of response to nCRT and can be considered as a promising tool for facilitating treatment decision-making for patients with LARC.

摘要

目的:探讨基于多参数磁共振成像(MRI)的影像组学在预测直肠癌患者新辅助放化疗(nCRT)疗效中的价值。 方法:本研究纳入了193例经病理确诊的局部晚期直肠癌(LARC)患者,这些患者于2014年4月至2018年6月期间接受了nCRT治疗。所有患者在新辅助放化疗前均接受了基线T1加权(T1W)、T2加权(T2W)和T2加权脂肪抑制(T2FS)MRI扫描。从MRI数据中提取并选择影像组学特征以建立影像组学特征模型。通过曼-惠特尼U检验和卡方检验确定重要的临床预测因素。使用多变量逻辑回归构建整合影像组学特征和重要临床预测因素的列线图。通过受试者操作特征(ROC)曲线分析评估每个模型的预测能力。通过校准和潜在临床实用性评估列线图的性能。 结果:对于预测良好反应(GR)和病理完全缓解(pCR),所建立的分别包含10个和7个特征的影像组学特征模型与nCRT的治疗反应显著相关。纳入影像组学特征和重要临床预测因素(预测GR时为癌胚抗原[CEA]和糖类抗原19-9[CA19-9];预测pCR时为CEA、治疗后长度和治疗后厚度)构建的列线图具有良好的预测效能,在预测GR的训练队列和验证队列中,曲线下面积(AUC)分别为0.918(95%置信区间[CI]:0.867-0.971,灵敏度[Sen]=0.972,特异度[Spe]=0.828)和0.944(95%CI:0.891-0.997,Sen=0.943,Spe=0.828);在预测pCR的训练队列和验证队列中,AUC分别为0.959(95%CI:0.927-0.991,Sen=1.000,Spe=0.833)和0.912(95%CI:0.843-0.982,Sen=1.000,Spe=0.815)。决策曲线分析证实了我们列线图的潜在临床实用性。 结论:本研究表明,基于MRI的影像组学列线图可预测nCRT的疗效,可被视为一种有前景的工具,有助于为LARC患者制定治疗决策。

相似文献

[1]
Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer.

Abdom Radiol (NY). 2021-11

[2]
Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer.

Eur Radiol. 2018-8-20

[3]
Radiomics signature as a new biomarker for preoperative prediction of neoadjuvant chemoradiotherapy response in locally advanced rectal cancer.

Diagn Interv Radiol. 2021-5

[4]
MRI-based radiomics analysis for predicting the EGFR mutation based on thoracic spinal metastases in lung adenocarcinoma patients.

Med Phys. 2021-9

[5]
MRI-based Multiregional Radiomics for Pretreatment Prediction of Distant Metastasis After Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer.

Acad Radiol. 2024-4

[6]
MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.

Acad Radiol. 2021-11

[7]
Multiparametric MRI-Based Radiomics Approaches for Preoperative Prediction of EGFR Mutation Status in Spinal Bone Metastases in Patients with Lung Adenocarcinoma.

J Magn Reson Imaging. 2021-8

[8]
Multi-parametric MRI-based radiomics for the diagnosis of malignant soft-tissue tumor.

Magn Reson Imaging. 2022-9

[9]
Selecting Candidates for Organ-Preserving Strategies After Neoadjuvant Chemoradiotherapy for Rectal Cancer: Development and Validation of a Model Integrating MRI Radiomics and Pathomics.

J Magn Reson Imaging. 2022-10

[10]
Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer.

Cancer Med. 2019-10-22

引用本文的文献

[1]
Artificial Intelligence and Rectal Cancer: Beyond Images.

Cancers (Basel). 2025-7-3

[2]
Can Radiomics Predict Pathologic Complete Response After Neoadjuvant Chemoradiotherapy for Rectal Cancer? A Systematic Review and Meta-Analysis of Diagnostic-Accuracy Studies.

J Pers Med. 2025-6-10

[3]
MRI radiomics prediction modelling for pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review and meta-analysis.

Abdom Radiol (NY). 2025-4-28

[4]
MRI-based radiomics for predicting pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review and meta-analysis.

Front Oncol. 2025-3-10

[5]
Exploring the value of multiple preprocessors and classifiers in constructing models for predicting microsatellite instability status in colorectal cancer.

Sci Rep. 2024-9-1

[6]
Multiparametric magnetic resonance imaging (MRI)-based radiomics model explained by the Shapley Additive exPlanations (SHAP) method for predicting complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicenter retrospective study.

Quant Imaging Med Surg. 2024-7-1

[7]
Magnetic resonance imaging-based radiomics analysis for prediction of treatment response to neoadjuvant chemoradiotherapy and clinical outcome in patients with locally advanced rectal cancer: A large multicentric and validated study.

MedComm (2020). 2024-6-20

[8]
Machine learning in predicting pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer using MRI: a systematic review and meta-analysis.

Br J Radiol. 2024-6-18

[9]
Prediction of locally advanced rectal cancer response to neoadjuvant chemoradiation therapy using volumetric multiparametric MRI-based radiomics.

Abdom Radiol (NY). 2024-3

[10]
Radiomic Features Are Predictive of Response in Rectal Cancer Undergoing Therapy.

Diagnostics (Basel). 2023-8-2

本文引用的文献

[1]
MRI-based clinical-radiomics model predicts tumor response before treatment in locally advanced rectal cancer.

Sci Rep. 2021-3-8

[2]
Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models.

BMC Med Imaging. 2021-2-16

[3]
MRI Radiomics for Prediction of Tumor Response and Downstaging in Rectal Cancer Patients after Preoperative Chemoradiation.

Adv Radiat Oncol. 2020-5-11

[4]
Artificial intelligence in radiation oncology.

Nat Rev Clin Oncol. 2020-12

[5]
MRI features and texture analysis for the early prediction of therapeutic response to neoadjuvant chemoradiotherapy and tumor recurrence of locally advanced rectal cancer.

Eur Radiol. 2020-4-8

[6]
Long-term imaging characteristics of clinical complete responders during watch-and-wait for rectal cancer-an evaluation of over 1500 MRIs.

Eur Radiol. 2019-8-19

[7]
The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges.

Theranostics. 2019-2-12

[8]
Prediction of efficacy of neoadjuvant chemoradiotherapy for rectal cancer: the value of texture analysis of magnetic resonance images.

Abdom Radiol (NY). 2019-11

[9]
Predicting locally advanced rectal cancer response to neoadjuvant therapy with F-FDG PET and MRI radiomics features.

Eur J Nucl Med Mol Imaging. 2019-1-13

[10]
Predictive value of carcinoembryonic antigen and carbohydrate antigen 19-9 related to downstaging to stage 0-I after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.

Cancer Manag Res. 2018-8-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索