Rai Jason, Mai Dinh V C, Drami Ioanna, Pring Edward T, Gould Laura E, Lung Phillip F C, Glover Thomas, Shur Joshua D, Whitcher Brandon, Athanasiou Thanos, Jenkins John T
BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK.
Department of Surgery and Cancer, Imperial College London, London, UK.
Abdom Radiol (NY). 2025 Apr 28. doi: 10.1007/s00261-025-04953-5.
Predicting response to neoadjuvant therapy in locally advanced rectal cancer (LARC) is challenging. Organ preservation strategies can be offered to patients with complete clinical response. We aim to evaluate MRI-derived radiomics models in predicting complete pathological response (pCR).
Search included MEDLINE, Embase and Cochrane Central Register of Controlled Trials (CENTRAL) and Cochrane Database of Systematic Reviews (CDSR) for studies published before 1st February 2024. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS) tools were used to assess quality of included study. The research protocol was registered in PROSPERO (CRD42024512865). We calculated pooled area under the receiver operating characteristic curve (AUC) using a random-effects model. To compare AUC between subgroups the Hanley & McNeil test was performed.
Forty-four eligible studies (12,714 patients) were identified for inclusion in the systematic review. We selected thirty-five studies including 10,543 patients for meta-analysis. The pooled AUC for MRI radiomics predicted pCR in LARC was 0.87 (95% CI 0.84-0.89). In the subgroup analysis 3 T MRI field intensity had higher pooled AUC 0.9 (95% CI 0.87-0.94) than 1.5 T pooled AUC 0.82 (95% CI 0.80-0.83) p < 0.001. Asian ethnicity had higher pooled AUC 0.9 (95% CI 0.87-0.93) than non-Asian pooled AUC 0.8 (95% CI 0.75-0.84) p < 0.001.
We have demonstrated that 3 T MRI field intensity provides a superior predictive performance. The role of ethnicity on radiomics features needs to be explored in future studies. Further research in the field of MRI radiomics is important as accurate prediction for pCR can lead to organ preservation strategy in LARC.
预测局部晚期直肠癌(LARC)对新辅助治疗的反应具有挑战性。对于具有完全临床反应的患者,可以提供器官保留策略。我们旨在评估基于MRI的放射组学模型在预测完全病理反应(pCR)方面的作用。
检索MEDLINE、Embase和Cochrane对照试验中央注册库(CENTRAL)以及Cochrane系统评价数据库(CDSR),查找2024年2月1日前发表的研究。使用诊断准确性研究质量评估2(QUADAS - 2)和放射组学质量评分(RQS)工具评估纳入研究的质量。研究方案已在PROSPERO(CRD42024512865)注册。我们使用随机效应模型计算受试者工作特征曲线下的合并面积(AUC)。为比较亚组之间的AUC,进行了Hanley & McNeil检验。
确定了44项符合条件的研究(12,714例患者)纳入系统评价。我们选择了35项研究,包括10,543例患者进行荟萃分析。MRI放射组学预测LARC中pCR的合并AUC为0.87(95%CI 0.84 - 0.89)。在亚组分析中,3T MRI场强的合并AUC为0.9(95%CI 0.87 - 0.94),高于1.5T的合并AUC 0.82(95%CI 0.80 - 0.83),p < 0.001。亚洲人种的合并AUC为0.9(95%CI 0.87 - 0.93),高于非亚洲人种的合并AUC 0.8(95%CI 0.75 - 0.84),p < 0.001。
我们已经证明3T MRI场强具有更好的预测性能。种族对放射组学特征的作用需要在未来的研究中进一步探索。MRI放射组学领域的进一步研究很重要,因为准确预测pCR可以为LARC患者带来器官保留策略。