Suppr超能文献

通过高效优化赋能深度神经量子态。

Empowering deep neural quantum states through efficient optimization.

作者信息

Chen Ao, Heyl Markus

机构信息

Center for Electronic Correlations and Magnetism, University of Augsburg, Augsburg, Germany.

出版信息

Nat Phys. 2024;20(9):1476-1481. doi: 10.1038/s41567-024-02566-1. Epub 2024 Jul 1.

Abstract

Computing the ground state of interacting quantum matter is a long-standing challenge, especially for complex two-dimensional systems. Recent developments have highlighted the potential of neural quantum states to solve the quantum many-body problem by encoding the many-body wavefunction into artificial neural networks. However, this method has faced the critical limitation that existing optimization algorithms are not suitable for training modern large-scale deep network architectures. Here, we introduce a minimum-step stochastic-reconfiguration optimization algorithm, which allows us to train deep neural quantum states with up to 10 parameters. We demonstrate our method for paradigmatic frustrated spin-1/2 models on square and triangular lattices, for which our trained deep networks approach machine precision and yield improved variational energies compared to existing results. Equipped with our optimization algorithm, we find numerical evidence for gapless quantum-spin-liquid phases in the considered models, an open question to date. We present a method that captures the emergent complexity in quantum many-body problems through the expressive power of large-scale artificial neural networks.

摘要

计算相互作用量子物质的基态是一个长期存在的挑战,特别是对于复杂的二维系统。最近的进展凸显了神经量子态通过将多体波函数编码到人工神经网络中来解决量子多体问题的潜力。然而,这种方法面临着关键限制,即现有的优化算法不适用于训练现代大规模深度网络架构。在此,我们引入一种最小步长随机重配置优化算法,它使我们能够训练具有多达10个参数的深度神经量子态。我们展示了该方法在方形和三角形晶格上的典型受挫自旋-1/2模型中的应用,对于这些模型,我们训练的深度网络接近机器精度,并且与现有结果相比产生了改进的变分能量。借助我们的优化算法,我们在考虑的模型中找到了无隙量子自旋液体相的数值证据,这是一个至今仍未解决的问题。我们提出了一种通过大规模人工神经网络的表达能力来捕捉量子多体问题中涌现复杂性的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ef/11392813/ed7d516c9fbe/41567_2024_2566_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验