Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA.
Phys Rev Lett. 2018 Oct 19;121(16):167204. doi: 10.1103/PhysRevLett.121.167204.
Artificial neural networks have been recently introduced as a general ansatz to represent many-body wave functions. In conjunction with variational Monte Carlo calculations, this ansatz has been applied to find Hamiltonian ground states and their energies. Here, we provide extensions of this method to study excited states, a central task in several many-body quantum calculations. First, we give a prescription that allows us to target eigenstates of a (nonlocal) symmetry of the Hamiltonian. Second, we give an algorithm to compute low-lying excited states without symmetries. We demonstrate our approach with both restricted Boltzmann machines and feed-forward neural networks. Results are shown for the one-dimensional spin-1/2 Heisenberg model, and for the one-dimensional Bose-Hubbard model. When comparing to exact results, we obtain good agreement for a large range of excited-states energies. Interestingly, we find that deep networks typically outperform shallow architectures for high-energy states.
人工神经网络最近被引入作为一种通用的方法来表示多体波函数。与变分蒙特卡罗计算相结合,该方法已被用于寻找哈密顿量基态及其能量。在这里,我们对该方法进行了扩展,以研究激发态,这是许多多体量子计算中的一项核心任务。首先,我们提供了一种方法,可以使我们能够针对哈密顿量(非局部)对称性的本征态。其次,我们提供了一种算法,可以计算没有对称性的低能激发态。我们使用受限玻尔兹曼机和前馈神经网络演示了我们的方法。结果显示在一维自旋 1/2 海森堡模型和一维玻色-哈伯德模型上。与精确结果进行比较时,我们在很大的激发态能量范围内获得了很好的一致性。有趣的是,我们发现对于高能态,深度网络通常优于浅层结构。