Chen Duan
Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC, USA.
Bull Math Biol. 2017 Nov;79(11):2696-2726. doi: 10.1007/s11538-017-0349-3. Epub 2017 Sep 22.
In this work, we propose a fractional Poisson-Nernst-Planck model to describe ion permeation in gated ion channels. Due to the intrinsic conformational changes, crowdedness in narrow channel pores, binding and trapping introduced by functioning units of channel proteins, ionic transport in the channel exhibits a power-law-like anomalous diffusion dynamics. We start from continuous-time random walk model for a single ion and use a long-tailed density distribution function for the particle jump waiting time, to derive the fractional Fokker-Planck equation. Then, it is generalized to the macroscopic fractional Poisson-Nernst-Planck model for ionic concentrations. Necessary computational algorithms are designed to implement numerical simulations for the proposed model, and the dynamics of gating current is investigated. Numerical simulations show that the fractional PNP model provides a more qualitatively reasonable match to the profile of gating currents from experimental observations. Meanwhile, the proposed model motivates new challenges in terms of mathematical modeling and computations.
在这项工作中,我们提出了一个分数阶泊松 - 能斯特 - 普朗克模型来描述门控离子通道中的离子渗透。由于内在的构象变化、狭窄通道孔中的拥挤状况、通道蛋白功能单元引入的结合和捕获作用,通道中的离子传输呈现出类似幂律的反常扩散动力学。我们从单个离子的连续时间随机游走模型出发,对粒子跳跃等待时间使用长尾密度分布函数,推导出分数阶福克 - 普朗克方程。然后,将其推广到离子浓度的宏观分数阶泊松 - 能斯特 - 普朗克模型。设计了必要的计算算法来对所提出的模型进行数值模拟,并研究门控电流的动力学。数值模拟表明,分数阶泊松 - 能斯特 - 普朗克模型在定性上与实验观测的门控电流曲线更合理地匹配。同时,所提出的模型在数学建模和计算方面引发了新的挑战。