Suppr超能文献

用于离子通过三维离子通道系统传输的并行有限元模拟器。

A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

机构信息

State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

J Comput Chem. 2013 Sep 15;34(24):2065-78. doi: 10.1002/jcc.23329. Epub 2013 Jun 5.

Abstract

A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can effectively lead to reduced current in the channel, and the results are closer to BD simulation results.

摘要

开发了一种并行有限元模拟器 ichannel,用于模拟由蛋白质和膜组成的三维离子通道系统中的离子传输。蛋白质重原子的坐标取自蛋白质数据库,而膜则表示为平板。模拟器包含两个组件:一个用于一组描述离子传输电扩散过程的泊松-纳斯特-普朗克(PNP)方程的并行自适应有限元求解器,以及一个用于离子通道系统的网格生成工具链,这是有限元计算的重要组成部分。有限元法在模拟不规则几何形状和复杂边界条件方面具有优势。我们构建了一个工具链来获取离子通道系统的表面和体积网格,该工具链由一组网格生成工具组成。我们的模拟器中的自适应有限元求解器是使用作者之一开发的并行自适应有限元包 Parallel Hierarchical Grid (PHG) 实现的,它提供了使用高并行效率进行大规模并行计算的能力,并且可以灵活选择高阶元素以实现高阶精度。该模拟器应用于真实的跨膜蛋白质,即革兰氏杀菌素 A (gA) 通道蛋白,以计算静电势、离子浓度和 I-V 曲线,研究了原始和转换后的 PNP 方程,并比较了它们的数值性能。为了进一步验证该方法,我们还将模拟器应用于另外两个离子通道系统,即电压依赖性阴离子通道 (VDAC) 和α-溶血素 (α-HL)。模拟结果与布朗动力学 (BD) 模拟结果和实验结果吻合良好。此外,由于现在可以在 PNP 模型中包含离子有限尺寸效应,我们还在 VDAC 和 α-HL 上使用尺寸修正的 PNP (SMPNP) 模型进行了模拟。结果表明,SMPNP 中的尺寸效应可以有效地降低通道中的电流,并且结果更接近 BD 模拟结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验