Suppr超能文献

通过开放通道的渗透:合成离子通道的泊松-能斯特-普朗克理论

Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.

作者信息

Chen D, Lear J, Eisenberg B

机构信息

Department of Molecular Biophysics and Physiology, Rush Medical College, Chicago, IL 60612, USA.

出版信息

Biophys J. 1997 Jan;72(1):97-116. doi: 10.1016/S0006-3495(97)78650-8.

Abstract

The synthetic channel [acetyl-(LeuSerSerLeuLeuSerLeu)3-CONH2]6 (pore diameter approximately 8 A, length approximately 30 A) is a bundle of six alpha-helices with blocked termini. This simple channel has complex properties, which are difficult to explain, even qualitatively, by traditional theories: its single-channel currents rectify in symmetrical solutions and its selectivity (defined by reversal potential) is a sensitive function of bathing solution. These complex properties can be fit quantitatively if the channel has fixed charge at its ends, forming a kind of macrodipole, bracketing a central charged region, and the shielding of the fixed charges is described by the Poisson-Nernst-Planck (PNP) equations. PNP fits current voltage relations measured in 15 solutions with an r.m.s. error of 3.6% using four adjustable parameters: the diffusion coefficients in the channel's pore DK = 2.1 x 10(-6) and DCl = 2.6 x 10(-7) cm2/s; and the fixed charge at the ends of the channel of +/- 0.12e (with unequal densities 0.71 M = 0.021e/A on the N-side and -1.9 M = -0.058e/A on the C-side). The fixed charge in the central region is 0.31e (with density P2 = 0.47 M = 0.014e/A). In contrast to traditional theories, PNP computes the electric field in the open channel from all of the charges in the system, by a rapid and accurate numerical procedure. In essence, PNP is a theory of the shielding of fixed (i.e., permanent) charge of the channel by mobile charge and by the ionic atmosphere in and near the channel's pore. The theory fits a wide range of data because the ionic contents and potential profile in the channel change significantly with experimental conditions, as they must, if the channel simultaneously satisfies the Poisson and Nernst-Planck equations and boundary conditions. Qualitatively speaking, the theory shows that small changes in the ionic atmosphere of the channel (i.e., shielding) make big changes in the potential profile and even bigger changes in flux, because potential is a sensitive function of charge and shielding, and flux is an exponential function of potential.

摘要

合成通道[乙酰基-(亮氨酸-丝氨酸-丝氨酸-亮氨酸-亮氨酸-丝氨酸-亮氨酸)3- CONH2]6(孔径约8埃,长度约30埃)是一束六个α-螺旋且末端封闭的结构。这个简单的通道具有复杂的特性,即使从定性角度,传统理论也难以解释:其单通道电流在对称溶液中呈整流特性,且其选择性(由反转电位定义)是浴液的敏感函数。如果通道两端带有固定电荷,形成一种宏观偶极,包围着一个中心带电区域,并且固定电荷的屏蔽由泊松-能斯特-普朗克(PNP)方程描述,那么这些复杂特性就可以进行定量拟合。PNP使用四个可调参数来拟合在15种溶液中测量的电流电压关系,均方根误差为3.6%:通道孔内的扩散系数DK = 2.1×10(-6)和DCl = 2.6×10(-7) cm2/s;通道两端的固定电荷为±0.12e(N侧密度为0.71 M = 0.021e/埃,C侧密度为-1.9 M = -0.058e/埃,密度不相等)。中心区域的固定电荷为0.31e(密度P2 = 0.47 M = 0.014e/埃)。与传统理论不同,PNP通过快速且精确的数值程序,根据系统中的所有电荷来计算开放通道中的电场。本质上,PNP是一种关于通道中固定(即永久)电荷被移动电荷以及通道孔内和附近离子氛围屏蔽的理论。该理论能拟合广泛的数据,因为通道内的离子含量和电位分布会随实验条件发生显著变化,而如果通道要同时满足泊松方程和能斯特-普朗克方程以及边界条件,情况必然如此。定性地说,该理论表明通道离子氛围的微小变化(即屏蔽)会使电位分布发生很大变化,进而使通量发生更大变化,因为电位是电荷和屏蔽的敏感函数,而通量是电位的指数函数。

相似文献

1
Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
Biophys J. 1997 Jan;72(1):97-116. doi: 10.1016/S0006-3495(97)78650-8.
2
Permeation through the calcium release channel of cardiac muscle.
Biophys J. 1997 Sep;73(3):1337-54. doi: 10.1016/S0006-3495(97)78167-0.
3
Flux, coupling, and selectivity in ionic channels of one conformation.
Biophys J. 1993 Aug;65(2):727-46. doi: 10.1016/S0006-3495(93)81099-3.
4
Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels.
Biophys J. 1998 Sep;75(3):1287-305. doi: 10.1016/S0006-3495(98)74048-2.
5
Charges, currents, and potentials in ionic channels of one conformation.
Biophys J. 1993 May;64(5):1405-21. doi: 10.1016/S0006-3495(93)81507-8.
6
Charge density identification in ion channels.
J Chem Phys. 2010 Dec 21;133(23):234113. doi: 10.1063/1.3518365.
7
Exploration of the structural features defining the conduction properties of a synthetic ion channel.
Biophys J. 1999 Feb;76(2):618-30. doi: 10.1016/S0006-3495(99)77230-9.
8
Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 2):036116. doi: 10.1103/PhysRevE.64.036116. Epub 2001 Aug 28.
9
Physical descriptions of experimental selectivity measurements in ion channels.
Eur Biophys J. 2002 Oct;31(6):454-66. doi: 10.1007/s00249-002-0239-x. Epub 2002 Jul 16.

引用本文的文献

1
Investigate channel rectifications and neural dynamics by an electrodiffusive Gauss-Nernst-Planck approach.
PLoS Comput Biol. 2025 Jun 30;21(6):e1012883. doi: 10.1371/journal.pcbi.1012883. eCollection 2025 Jun.
2
Electrophysiology.
Commun Pure Appl Math. 2013 Dec;66(12):1837-1913. doi: 10.1002/cpa.21484. Epub 2013 Oct 9.
3
Computational methods and theory for ion channel research.
Adv Phys X. 2022;7(1). doi: 10.1080/23746149.2022.2080587.
4
Molecular Mean-Field Theory of Ionic Solutions: A Poisson-Nernst-Planck-Bikerman Model.
Entropy (Basel). 2020 May 14;22(5):550. doi: 10.3390/e22050550.
5
Electrodiffusion models of synaptic potentials in dendritic spines.
J Comput Neurosci. 2019 Aug;47(1):77-89. doi: 10.1007/s10827-019-00725-5. Epub 2019 Aug 13.
6
Electrical coupling and its channels.
J Gen Physiol. 2018 Dec 3;150(12):1606-1639. doi: 10.1085/jgp.201812203. Epub 2018 Nov 2.
7
Selecting ions by size in a calcium channel: the ryanodine receptor case study.
Biophys J. 2014 Nov 18;107(10):2263-73. doi: 10.1016/j.bpj.2014.09.031.
8
Multiscale Multiphysics and Multidomain Models I: Basic Theory.
J Theor Comput Chem. 2013 Dec;12(8). doi: 10.1142/S021963361341006X.
10
Interacting ions in biophysics: real is not ideal.
Biophys J. 2013 May 7;104(9):1849-66. doi: 10.1016/j.bpj.2013.03.049.

本文引用的文献

1
Computing the field in proteins and channels.
J Membr Biol. 1996 Mar;150(1):1-25. doi: 10.1007/s002329900026.
2
The determinants of pKas in proteins.
Biochemistry. 1996 Jun 18;35(24):7819-33. doi: 10.1021/bi9601565.
3
Hydrodynamic model of temperature change in open ionic channels.
Biophys J. 1995 Dec;69(6):2304-22. doi: 10.1016/S0006-3495(95)80101-3.
5
Prediction of pH-dependent properties of proteins.
J Mol Biol. 1994 May 6;238(3):415-36. doi: 10.1006/jmbi.1994.1301.
6
A multi-ion permeation mechanism in neuronal background chloride channels.
J Gen Physiol. 1994 Oct;104(4):725-46. doi: 10.1085/jgp.104.4.725.
7
Classical electrostatics in biology and chemistry.
Science. 1995 May 26;268(5214):1144-9. doi: 10.1126/science.7761829.
8
Acetylcholinesterase: diffusional encounter rate constants for dumbbell models of ligand.
Biophys J. 1995 Jan;68(1):62-8. doi: 10.1016/S0006-3495(95)80159-1.
9
Calculation of electrostatic effects at the amino terminus of an alpha helix.
Biophys J. 1994 Dec;67(6):2251-60. doi: 10.1016/S0006-3495(94)80709-X.
10
Flux, coupling, and selectivity in ionic channels of one conformation.
Biophys J. 1993 Aug;65(2):727-46. doi: 10.1016/S0006-3495(93)81099-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验