Suppr超能文献

B 细胞在重症肌无力的病理生理学中的作用。

B cells in the pathophysiology of myasthenia gravis.

机构信息

Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA.

Department of Neurology, Neuromuscular Section, Duke University Medical Center, Durham, North Carolina, USA.

出版信息

Muscle Nerve. 2018 Feb;57(2):172-184. doi: 10.1002/mus.25973. Epub 2017 Sep 30.

Abstract

Myasthenia gravis (MG) is an archetypal autoimmune disease. The pathology is characterized by autoantibodies to the acetylcholine receptor (AChR) in most patients or to muscle-specific tyrosine kinase (MuSK) in others and to a growing number of other postsynaptic proteins in smaller subsets. A decrease in the number of functional AChRs or functional interruption of the AChR within the muscle end plate of the neuromuscular junction is caused by pathogenic autoantibodies. Although the molecular immunology underpinning the pathology is well understood, much remains to be learned about the cellular immunology contributing to the production of autoantibodies. This Review documents research concerning the immunopathology of MG, bringing together evidence principally from human studies with an emphasis on the role of adaptive immunity and B cells in particular. Proposed mechanisms for autoimmunity, which take into account that different types of MG may incorporate divergent immunopathology, are offered. Muscle Nerve 57: 172-184, 2018.

摘要

重症肌无力(MG)是一种典型的自身免疫性疾病。其病理学特征是大多数患者存在乙酰胆碱受体(AChR)自身抗体,或其他患者存在肌肉特异性酪氨酸激酶(MuSK)自身抗体,以及越来越多的其他较小亚群的突触后蛋白自身抗体。致病性自身抗体导致肌肉终板的功能性 AChR 数量减少或 AChR 功能中断。尽管对其病理学的分子免疫学已有很好的了解,但对于有助于产生自身抗体的细胞免疫学仍有许多需要了解。这篇综述记录了有关 MG 免疫病理学的研究,汇集了主要来自人类研究的证据,特别强调适应性免疫和 B 细胞的作用。提出了考虑到不同类型的 MG 可能包含不同免疫病理学的自身免疫机制。肌肉神经 57:172-184,2018。

相似文献

1
B cells in the pathophysiology of myasthenia gravis.
Muscle Nerve. 2018 Feb;57(2):172-184. doi: 10.1002/mus.25973. Epub 2017 Sep 30.
2
Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology.
Front Immunol. 2020 May 27;11:776. doi: 10.3389/fimmu.2020.00776. eCollection 2020.
3
Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction.
Autoimmunity. 2010 Aug;43(5-6):353-70. doi: 10.3109/08916930903555943.
5
Muscle-Specific Receptor Tyrosine Kinase (MuSK) Myasthenia Gravis.
Curr Neurol Neurosci Rep. 2016 Jul;16(7):61. doi: 10.1007/s11910-016-0668-z.
6
Antigen specific B cells in myasthenia gravis patients.
Immunol Med. 2020 Jun;43(2):65-71. doi: 10.1080/25785826.2020.1724756. Epub 2020 Feb 11.
7
Anti-MuSK patient antibodies disrupt the mouse neuromuscular junction.
Ann Neurol. 2008 Jun;63(6):782-9. doi: 10.1002/ana.21371.
8
[Advances in the research on immunopathogenesis of myasthenia gravis].
Neurol Neurochir Pol. 2003 Sep-Oct;37(5):1085-94.
9
Myasthenia and the neuromuscular junction.
Curr Opin Neurol. 2012 Oct;25(5):523-9. doi: 10.1097/WCO.0b013e3283572588.

引用本文的文献

1
CD19CD11cT-bet B cells in myasthenia gravis: a potential biomarker.
Front Neurol. 2025 Aug 22;16:1623066. doi: 10.3389/fneur.2025.1623066. eCollection 2025.
2
Skeletal Muscle and the Immune System.
Adv Exp Med Biol. 2025;1478:545-571. doi: 10.1007/978-3-031-88361-3_23.
3
CAR T-cell therapy in autoimmune diseases: a promising frontier on the horizon.
Front Immunol. 2025 Aug 12;16:1613878. doi: 10.3389/fimmu.2025.1613878. eCollection 2025.
7
The role of fatty acid metabolism on B cells and B cell-related autoimmune diseases.
Inflamm Res. 2025 Apr 29;74(1):75. doi: 10.1007/s00011-025-02042-3.
8
Efgartigimod Followed by Telitacicept in Adult Generalized Myasthenia Gravis: A Retrospective Case Series.
J Inflamm Res. 2025 Apr 8;18:4831-4842. doi: 10.2147/JIR.S513986. eCollection 2025.
9
A clinical perspective on muscle specific kinase antibody positive myasthenia gravis.
Front Immunol. 2024 Dec 5;15:1502480. doi: 10.3389/fimmu.2024.1502480. eCollection 2024.
10
Chimeric antigen receptor T-cell therapy in autoimmune diseases.
Front Immunol. 2024 Nov 19;15:1492552. doi: 10.3389/fimmu.2024.1492552. eCollection 2024.

本文引用的文献

2
Myasthenia gravis: An emerging toxicity of immune checkpoint inhibitors.
Eur J Cancer. 2017 Sep;82:128-136. doi: 10.1016/j.ejca.2017.05.041. Epub 2017 Jun 27.
3
IgG-specific cell-based assay detects potentially pathogenic MuSK-Abs in seronegative MG.
Neurol Neuroimmunol Neuroinflamm. 2017 Jun 5;4(4):e357. doi: 10.1212/NXI.0000000000000357. eCollection 2017 Jul.
4
Severe Exacerbation of Myasthenia Gravis Associated with Checkpoint Inhibitor Immunotherapy.
J Neuromuscul Dis. 2017;4(2):169-173. doi: 10.3233/JND-170219.
5
Multiple antibody detection in 'seronegative' myasthenia gravis patients.
Eur J Neurol. 2017 Jun;24(6):844-850. doi: 10.1111/ene.13300. Epub 2017 May 4.
6
B10 Cell Frequencies and Suppressive Capacity in Myasthenia Gravis Are Associated with Disease Severity.
Front Neurol. 2017 Feb 10;8:34. doi: 10.3389/fneur.2017.00034. eCollection 2017.
7
Myasthenia triggered by immune checkpoint inhibitors: New case and literature review.
Neuromuscul Disord. 2017 Mar;27(3):266-268. doi: 10.1016/j.nmd.2017.01.002. Epub 2017 Jan 6.
9
Dysregulation of B Cell Repertoire Formation in Myasthenia Gravis Patients Revealed through Deep Sequencing.
J Immunol. 2017 Feb 15;198(4):1460-1473. doi: 10.4049/jimmunol.1601415. Epub 2017 Jan 13.
10
Myasthenia Gravis.
N Engl J Med. 2016 Dec 29;375(26):2570-2581. doi: 10.1056/NEJMra1602678.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验